Assessment of North American Industrial Forests
Disturbances, Biomass Extraction
Growth Vigor

Chengquan Huang 1, Feng Aron Zhao 1, Xin Tao 1, Ming Feng 1, Pui-Yu Ling 1, Samuel Goward 1,
Karen Schleeweis 2, Matthew Hansen 1, Peter Potapov 1, Jennifer Dungan 3,
Andrew Michaelis 3, Matthew Fagon 4, Jeff Masek 5,
Ramakrishna Nemani 3, Michael Wulder 6

1 Department of Geographical Sciences, University of Maryland; 2 USDA Forest Service, Rocky Mountain Research Station; 3 NASA Ames Research Center; 4 University of Maryland Baltimore County; 5 NASA Goddard Space Flight Center; 6 Canadian Forest Service

NASA LCLUC Science Team Meeting, Bethesda, MD, April 18 – 19, 2016
We Need Industrial Forests, But ...

- Societal benefits:
 - Wood Products, Timber supply
 - Reduce cutting of natural forests
 - Carbon sequestration

- Environmental impact
 - Mono-species
 - Not much structure variability
 - Rarely become old growth
 - Intensive management
 - Negative impact on soil, water, biodiversity
Key Assessment Questions

- What’s the growth rate?
- Where, when, intensity
- How much?

Growth/Management

Life Cycle of Industrial Forest

Planting/Natural Regeneration

Harvest
Study Area

• US
 • Private land
 • Some public land subject to industrial logging (e.g., national forest)

• Canada: timber tenure
Overall Approach

Where, when, intensity

How much?

What's the growth rate?

Landsat Time Series Stacks (LTSS)

Vegetation Change Tracker (VCT)

Year index (1984)

Annual index

(Year: 09)

(Year: 09)

Disturbance

Permanent forest

North Carolina

Field data

Attribution

TPO

FIA
Vegetation Change Tracker (VCT)

Major Outputs:
- Disturbance year
- Disturbance intensity
- Whether and when growth back

(Huang et al., 2010)
US-Canada Forest Disturbance History Map

Legend
- Unclassified
- Persisting Nonforest
- Persisting Forest
- Water
- Pre-1985

Pre-1985: Beetles, damage, salvage logging
Sand oil exploration
Urbanization
Harvest
Fire
Probabilistic Sampling Design - 2
stage stratified random cluster

Response Classes:
• Harvest
• Wind
• Fire
• Stress *
• Conversion
• Other

- 7200 plots
- 30% FC * 1.5% yr * 25 yrs ~ 800 DF, but we got 1438 DF plots (Cohen et al. 2016)
- augmented with 560 disturbance plots from Pilot study

(Schleeweis et al.)
Multiple Landsat time-series change algorithms:

- **VCT** (Huang et al. 2010)
- Shape-restricted splines (Meyer 2008, 2012)
- **MTBS** (P/A)

TOPOGRAPHY

DISTANCE TO:
- Roads, Navigable Waterways,
- Areas of housing density increases (Theobald 2004),
- ADS confidence/severity (Schleeweis 2013),
- Tornadoes tracks (NOAA)
- Hurricanes tracks (NOAA)

SOUTHERNITY

MAGNITUDE:
- VCT – FI, NDVI, B5, NBR

TEMPORAL PATTERNS:
- VCT- year, frequency,
- Shapes FI, NDVI, B5, NBR – duration, pre-rate, Post-rate,

Spatial pattern (VCT):
- VCT - Area, perimeter,
- shape index, fractal index

VEGETATION:
- Forest Probability (Blackard et al.)
- Forest Type Group (Ruefenacht et al.)

STATUS
- GAP status

(Schleeweis et al.)
Preliminary US Forest Harvest Map

~25% of Forest land in CONUS harvested 1985-2010

(Schleeweis et al.)
Satellite Observed Disturbance Dominated by Harvest in NC

Disturbed Forest area by agent:
- Harvest: 96%
- Conversion: 2%
- Fire: 2%
Methods: Mapping tree plantations

- National Land Cover Database (NLCD)
- NDVI (2011 summer-winter, texture)
- LiDAR reflectance

Spectral

- Vegetation Change Tracker (VCT), 1985-2011
- Hansen Forest Change data, 2000-2013

Structural

- G-LiHT aerial LiDAR data
- Metrics for 15 m bins
 - Canopy variability
 - Canopy shape
 - Understory cover
 - Forest cover

Temporal

Fagan et al., in prep
LiDAR-derived structure is a key predictor, across the different classification models

But the combination of spectral-temporal predictors is comparable!
Key Assessment Questions

- What’s the growth rate?
- Where, when, intensity
- How much?

Life Cycle of Industrial Forest

Growth/Management

Planting/Natural Regeneration

Harvest
Survey Based Timber Volume Estimates

Forest Inventory and Analysis National Program

Program Features

Timber Products Output Studies

FIA conducts Timber Products Output (TPO) studies to estimate industrial and non-industrial uses of roundwood in a state. To estimate industrial uses of roundwood, all primary wood-using mills in...
Availability of USFS TPO Data Limited & Inconsistent

Figure 1. Number of years for which ground-based TPO survey data exist in the conterminous USA (updated as of June 2013).
Establish Annual TPO Record Using Landsat-Based Disturbance/Harvest History

• TPO correlated with disturbance data
 • Establish TPO-disturbance model based on available TPO survey data
 • Apply model to all years covered by disturbance data
An Annual TPO Record for NC

Estimation of C in Different Species of Wood Products

(Ling et al., 2016, DOI 10.1007/s10584-015-1510-3)
Disturbance-Based Estimate of C in Wood Products Likely More Realistic

(Ling et al., 2016, DOI 10.1007/s10584-015-1510-3)
Key Assessment Questions

What’s the growth rate?

Growth/Management

Life Cycle of Industrial Forest

Where, when,

Harvest

How much?

Planting/Natural
Regeneration
Use FIA Data to Quantify Disturbance Intensity and Regrowth Rate

- FIA plots
 - Standardized since 2000
 - Distributed across CONUS at 5 km intervals
 - Revisited once every 5 years in eastern US and every 10 years in Western US
 - Most plots measured at least twice since 2000
 - Disturbance intensity
 - Growth rates

- Link field measurements to satellite based disturbance data
 - Need to tease out errors in the FIA data
 - Some remeasurements may not be from the same location

FIA Plot Design
More to come, thanks to the support of this great program