Cross-calibration of current Landsat sensors with foreign Landsat-class sensors for long-term monitoring of land surface processes

Gyanesh Chander¹, Dennis L. Holder², Thomas R. Lavelle³, Gregory L. Stensaa⁴, Brian L. Markman⁵, James R. Brown⁶

¹SGT, Inc., contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD. Work performed under USGS contract 08HQCN0005.
²South Dakota State University, USGS EOS, NASA Goddard Space Flight Center

Overview

• Goal: The goal of this proposal is to extend the theoretical and applied understanding of radiometric cross-calibration of multiple sensors in support of continued long-term studies of the Earth’s land surfaces
• Need: Cross-calibration
• To tie similar & differing sensors onto a common radiometric scale
• Critical to coordinate observations from different sensors, exploiting their individual spatial resolutions, temporal sampling, and information content to monitor surface processes
• To understand the absolute radiometric calibration accuracy of IRS-P6 AWiFS and LISS-III sensors, image pairs from these sensors were compared to images from the L5 TM & L7 ETM+ sensors. The approach involves calibration of surface observations based on image statistics from areas observed nearly simultaneously by the two sensors
• The TOA reflectance from the Landsat sensor is compared against the TOA reflectance of the AWiFS and LISS-III sensors
• The average TOA reflectance estimates obtained from these sensors agree within 13 percent

Relevance

• The proposed work supports USGS & NASA’s long-term commitment to IRS by specifically creating a bridge between the calibration record of current Landsat sensors and the upcoming LC08 sensor, as well as providing tools and techniques applicable to other current and future sensors
• This project is critical for the understanding of international sensors to support the LandGAPS/LaGAPS international efforts
• This project will develop a catalog, lossless, reproducible, accurate data, to coordinate monitoring of data quality from multiple satellites, and provide assessments of the impact of this improved knowledge in real, ongoing scientific applications
• Cross-calibration capability will prove crucial to ensuring accuracy, interoperability, and reliability between multiple data sources in a NLIP/GEOSS environment

Monitoring On-orbit radiometric stability

• A methodology for long-term monitoring of the on-orbit radiometric stability using pseudo-replication test sites was developed

Primary Objectives

• Research & Development (R&D): Develop a robust approach for cross-calibration sensors with an initial focus on Landsat 5/7 and the Indian Remote Sensing Satellite Payload (IRS-P6) sensors
• Sensitivity Studies: Investigate & quantify the uncertainties inherent in the cross-calibration process. These include error sources such as differing spectral profiles, spatial and radiometric resolution differences, geographic registration, BRDF and atmospheric effects
• Land Cover Validation: Validate the cross-calibration approach by analyzing the LCLUC products produced from cross-calibrated sensors. The stability of IRS sensors for land cover applications (e.g., quantifying fractional landscape components, and land change analysis) will be evaluated

Catalog of Worldwide Test Sites

Satellite Coincident Imaging Tool

• A coincident imaging tool was developed to identify the potential near-simultaneous earth observations of Earth from sensors that have different ground tracks and repeat cycles

RSR Comparison

Summary & Future Work

• Developed worldwide test site catalog and coincident imaging tool
• Identified test sites with good coverage of Landsat & IRS data
• Compared the results to perform the long-term monitoring of the on-orbit radiometric stability of the potential LDG sensors
• Performed initial cross-calibration between Landsat & IRS-P6 sensors. Additional work is underway to characterize the uncertainties due to differing spectral profiles, geographic registration, spatial and radiometric resolution, BRDF, and atmospheric effects
• Initiated application studies to evaluate the suitability of the IRS sensors for Land Cover applications (e.g., quantifying fractional landscape components, land change analysis) through a comparison with legacy data sets generated from Landsat data

Cross-calibration

• The plots show the long-term Top-of-Atmosphere (TOA) reflectance trending of the spectrally matching bands
• The TOA reflectances from ETM+ (blue cross), AWIIFS (orange plus), & MODIS (red square), have been trended and the error bars (in black) denote the 1-sigma deviation from the mean TOA reflectance within the homogenous regions of interest (ROI)
• The annual oscillations are caused by BRDF effects. Linear equations are fitted, showing very small slope and constant offsets
• To evaluate the long-term stability of the sensors, average percent differences between the TOA reflectances and MODZ’s were computed for each band
• The TOA reflectance from the Landsat sensor is compared against the TOA reflectance of the IRS-P6 and LISS-III sensors

• The annual oscillations are caused by BRDF effects. Linear equations are fitted, showing very small slope and constant offsets
• The average percent differences between the TOA reflectances and MODZ’s were computed for each band

Primary Objectives

• Research & Development (R&D): Develop a robust approach for cross-calibration sensors with an initial focus on Landsat 5/7 and the Indian Remote Sensing Satellite Payload (IRS-P6) sensors
• Sensitivity Studies: Investigate & quantify the uncertainties inherent in the cross-calibration process. These include error sources such as differing spectral profiles, spatial and radiometric resolution differences, geographic registration, BRDF and atmospheric effects
• Land Cover Validation: Validate the cross-calibration approach by analyzing the LCLUC products produced from cross-calibrated sensors. The stability of IRS sensors for land cover applications (e.g., quantifying fractional landscape components, and land change analysis) will be evaluated

Catalog of Worldwide Test Sites

Satellite Coincident Imaging Tool

• A coincident imaging tool was developed to identify the potential near-simultaneous earth observations of Earth from sensors that have different ground tracks and repeat cycles

RSR Comparison

Summary & Future Work

• Developed worldwide test site catalog and coincident imaging tool
• Identified test sites with good coverage of Landsat & IRS data
• Compared the results to perform the long-term monitoring of the on-orbit radiometric stability of the potential LDG sensors
• Performed initial cross-calibration between Landsat & IRS-P6 sensors. Additional work is underway to characterize the uncertainties due to differing spectral profiles, geographic registration, spatial and radiometric resolution, BRDF, and atmospheric effects
• Initiated application studies to evaluate the suitability of the IRS sensors for Land Cover applications (e.g., quantifying fractional landscape components, land change analysis) through a comparison with legacy data sets generated from Landsat data

Cross-calibration

• The plots show the long-term Top-of-Atmosphere (TOA) reflectance trending of the spectrally matching bands
• The TOA reflectances from ETM+ (blue cross), AWIIFS (orange plus), & MODIS (red square), have been trended and the error bars (in black) denote the 1-sigma deviation from the mean TOA reflectance within the homogenous regions of interest (ROI)
• The annual oscillations are caused by BRDF effects. Linear equations are fitted, showing very small slope and constant offsets
• To evaluate the long-term stability of the sensors, average percent differences between the TOA reflectances and MODZ’s were computed for each band
• The TOA reflectance from the Landsat sensor is compared against the TOA reflectance of the IRS-P6 and LISS-III sensors
• The average percent differences between the TOA reflectances and MODZ’s were computed for each band

Primary Objectives

• Research & Development (R&D): Develop a robust approach for cross-calibration sensors with an initial focus on Landsat 5/7 and the Indian Remote Sensing Satellite Payload (IRS-P6) sensors
• Sensitivity Studies: Investigate & quantify the uncertainties inherent in the cross-calibration process. These include error sources such as differing spectral profiles, spatial and radiometric resolution differences, geographic registration, BRDF and atmospheric effects
• Land Cover Validation: Validate the cross-calibration approach by analyzing the LCLUC products produced from cross-calibrated sensors. The stability of IRS sensors for land cover applications (e.g., quantifying fractional landscape components, and land change analysis) will be evaluated

Catalog of Worldwide Test Sites

Satellite Coincident Imaging Tool

• A coincident imaging tool was developed to identify the potential near-simultaneous earth observations of Earth from sensors that have different ground tracks and repeat cycles

RSR Comparison

Summary & Future Work

• Developed worldwide test site catalog and coincident imaging tool
• Identified test sites with good coverage of Landsat & IRS data
• Compared the results to perform the long-term monitoring of the on-orbit radiometric stability of the potential LDG sensors
• Performed initial cross-calibration between Landsat & IRS-P6 sensors. Additional work is underway to characterize the uncertainties due to differing spectral profiles, geographic registration, spatial and radiometric resolution, BRDF, and atmospheric effects
• Initiated application studies to evaluate the suitability of the IRS sensors for Land Cover applications (e.g., quantifying fractional landscape components, land change analysis) through a comparison with legacy data sets generated from Landsat data

Cross-calibration

• The plots show the long-term Top-of-Atmosphere (TOA) reflectance trending of the spectrally matching bands
• The TOA reflectances from ETM+ (blue cross), AWIIFS (orange plus), & MODIS (red square), have been trended and the error bars (in black) denote the 1-sigma deviation from the mean TOA reflectance within the homogenous regions of interest (ROI)
• The annual oscillations are caused by BRDF effects. Linear equations are fitted, showing very small slope and constant offsets
• To evaluate the long-term stability of the sensors, average percent differences between the TOA reflectances and MODZ’s were computed for each band
• The TOA reflectance from the Landsat sensor is compared against the TOA reflectance of the IRS-P6 and LISS-III sensors
• The average percent differences between the TOA reflectances and MODZ’s were computed for each band

Primary Objectives

• Research & Development (R&D): Develop a robust approach for cross-calibration sensors with an initial focus on Landsat 5/7 and the Indian Remote Sensing Satellite Payload (IRS-P6) sensors
• Sensitivity Studies: Investigate & quantify the uncertainties inherent in the cross-calibration process. These include error sources such as differing spectral profiles, spatial and radiometric resolution differences, geographic registration, BRDF and atmospheric effects
• Land Cover Validation: Validate the cross-calibration approach by analyzing the LCLUC products produced from cross-calibrated sensors. The stability of IRS sensors for land cover applications (e.g., quantifying fractional landscape components, and land change analysis) will be evaluated