EO Sensors : ISRO
Past, Current & Future

Vinay K Dadhwal
Director
National Remote Sensing Centre, ISRO, Hyderabad, INDIA

International Regional Science Meeting on Land Cover and Land Use Change Dynamics and Impacts in South Asia
Karunya University, Coimbatore, 10 Jan 2013
Historical Development

• Aryabhatta
 – First Satellite (Not EO) built by ISRO & launched from Russia

• Bhaskara I (1979) & Bhaskara II (1981)
 – First series of experimental Earth Observation satellites,

• Geostationary for Weather Studies

• Experimental & Technology Satellites
 – SROSS, TES (High Resolution), IMS (Microsatellite)

• Operational IRS Series
 – IRS 1A, IRS 1B, IRS 1C, IRS 1D

• Thematic Series
Bhaskara satellite

• Bhaskara I
 – Launched: June 7, 1979 by Intercosmos (USSR)
 – Optical: TV Camera, 1 km, 2 band (Red, NIR)
 – Microwave Radiometer: SAMIR (19.24, 22.235, 31.4 GHz)

• Bhaskara II
 – Launched: Nov 20, 1981 by Intercosmos (USSR)
 – Optical: TV Camera, 1 km, 2 band (Red, NIR)
 – Microwave Radiometer: SAMIR

SAMIR
Dicke Radiometer
3 frequencies
19.35, 22.35 and 31 GHz
150-250 Km GSD
1500 Km swath

TVPayload
Frame imager
341*341 Sq M
1Km GSD
Intensifier coupled
SUPER Vidicon
Refractive optics
Operational IRS Satellites - Initiation

<table>
<thead>
<tr>
<th>Mission</th>
<th>IRS-1A</th>
<th>IRS-1B</th>
<th>IRS-1C</th>
<th>IRS-1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>975 kg</td>
<td>975 kg</td>
<td>1250 kg</td>
<td>1250 kg</td>
</tr>
<tr>
<td>Onboard power</td>
<td>600 Watts</td>
<td></td>
<td>809 Watts/(9.6 sqm)</td>
<td></td>
</tr>
<tr>
<td>(Solar Panel, sq m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>S-band, X-band, VHF</td>
<td>S-band, X-band</td>
<td>WiFS (189 m)</td>
<td>LiSS-3 (23.6m)</td>
</tr>
<tr>
<td>Payloads, (Solid State Push Broom Camera)</td>
<td>LiSS-1 (72.5 m)</td>
<td>LiSS-2A, 2B (36.25 m)</td>
<td></td>
<td>WiFS (189 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LiSS-3 (23.6m)</td>
<td>PAN (<6m)</td>
</tr>
<tr>
<td>Onboard Tape Recorder</td>
<td></td>
<td></td>
<td>62 Gb</td>
<td>62 Gb</td>
</tr>
<tr>
<td>Launch Vehicle/ Site</td>
<td>Vostok/ Baikanur, Kazakhstan</td>
<td>Molniya/ Baikanur, Kazakhstan</td>
<td>PSLV – C1, SHAR</td>
<td></td>
</tr>
<tr>
<td>Orbit # (ht km)</td>
<td>904 km</td>
<td>904 km</td>
<td>817 km</td>
<td>740 x 817 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>99.08°</td>
<td>99.08°</td>
<td>98.69°</td>
<td>98.69</td>
</tr>
<tr>
<td>Repetivity/ (Orbits)</td>
<td>22 days / (307 orbits)</td>
<td>24 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local time &</td>
<td>10.30 a.m.</td>
<td>10.30 a.m.</td>
<td>10.30 a.m</td>
<td>10.30 a.m</td>
</tr>
</tbody>
</table>

Orbit : Polar Sun Synchronous ; & Local Time : Descending Node
Resourcesat-1 (IRS-P6)

- **Simultaneous data acquisition at different spatial resolutions for micro to macro level applications**
- **Improved capability in radiometric, spatial and temporal resolutions**

<table>
<thead>
<tr>
<th>Specifications</th>
<th>LISS-4</th>
<th>LISS-3</th>
<th>AWiFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Resolution (m)</td>
<td>5.8 m</td>
<td>23.5 m</td>
<td>56 m</td>
</tr>
<tr>
<td>Swath (km)</td>
<td>23.9 (MX)/ 70 (Mono)</td>
<td>141</td>
<td>370 x 2</td>
</tr>
</tbody>
</table>
| Spectral Bands (μm) | B2 - 0.52 to 0.59
B3 - 0.62 to 0.68
B4 - 0.77 to 0.86 | B2 - 0.52 to 0.59
B3 - 0.62 to 0.68
B4 - 0.77 to 0.86
B5 - 1.55 to 1.70 | B2 - 0.52 to 0.59
B3 - 0.62 to 0.68
B4 - 0.77 to 0.86
B5 - 1.55 to 1.70 |
| Quantization (Bits) | Best 7 of 10 | 7 | 10 |
| Revisit / Cycle (Days) | 5 / 24 | 24 / 24 | 5 / 24 |

Improved capability in radiometric, spatial and temporal resolutions

Simultaneous data acquisition at different spatial resolutions for micro to macro level applications
RSR : Across sensors & missions

Chander et al., 2007, Trans IEEE

Pandya Et al., 2007, J.Ind Soc. Rem Sens, 35, 333
IRS-P3 and P4: Ocean Observations

IRS-P3 (1996)
MOS-A/B/C Spectrometer
- 500m resolution, 200 km Swath
- 18 Bands (0.408-1.6 μm)
WiFS Sensor
- 188m resolution, 810 km swath

IRS-P4 (1999)
OCM Sensor
- 360m resolution, 1420 km Swath
- 8 Bands (0.402-885 μm)
MSMR Sensor
- Microwave passive Radiometer
- 6.6, 10.65, 18, 21 GHz
- 150, 75, 50, 50 km resolution
Oceansat-2: Payloads

Ocean Color Monitor -2

Oceansat-2 is continuity of Oceansat-1 with modification in OCM channels and availability of Scatterometer

Pencil Beam Scanning Scatterometer

Band 765 nm → 740 nm to avoid O₂ absorption

Band 670 nm → 620 nm for better quantification of suspended sediments

- Ku-band 13.515 GHz
- Spatial res., 50 km
- Ocean surface wind speed from 4 m/sec to 24 m/sec
Scatterometer Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>720 Km</td>
</tr>
<tr>
<td>Frequency</td>
<td>13.5156 GHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>50 km X 50 km</td>
</tr>
<tr>
<td>Polarisation</td>
<td>HHI (Inner) and VV (Outer)</td>
</tr>
<tr>
<td>Antenna</td>
<td>Parabola of 1.0 m Dia</td>
</tr>
<tr>
<td>Scanning Rate</td>
<td>20.5 rpm</td>
</tr>
<tr>
<td>Data Rate</td>
<td>13.11 Mbit/sec (Raw)</td>
</tr>
<tr>
<td></td>
<td>74.4 Kbit/Sec (Processed)</td>
</tr>
<tr>
<td>Transmit Power</td>
<td>100 W Peak</td>
</tr>
<tr>
<td>Swath</td>
<td>1400 km</td>
</tr>
<tr>
<td>Wind Speed Range</td>
<td>4 to 24 m/s</td>
</tr>
<tr>
<td>Wind Speed Accuracy</td>
<td>2 m/sec or 10% (Whichever is higher)</td>
</tr>
<tr>
<td>Wind Direction Accuracy</td>
<td>20 deg RMS</td>
</tr>
</tbody>
</table>

Scatterometer Geometry

- **Orbit Track**: 720 Kms
- **Altitude**: 720 Km
- **Frequency**: 13.5156 GHz
- **Resolution**: 50 km X 50 km
- **Polarisation**: HHI (Inner) and VV (Outer)
- **Antenna**: Parabola of 1.0 m Dia
- **Scanning Rate**: 20.5 rpm
- **Data Rate**: 13.11 Mbit/sec (Raw), 74.4 Kbit/Sec (Processed)
- **Transmit Power**: 100 W Peak
- **Swath**: 1400 km
- **Wind Speed Range**: 4 to 24 m/s
- **Wind Speed Accuracy**: 2 m/sec or 10% (Whichever is higher)
- **Wind Direction Accuracy**: 20 deg RMS

2009 Launch

- **Scatterometer**: OCEANSAT-2 : SCATTEROMETER
- **Orbit Track**: 720 Kms
- **Altitude**: 720 Km
- **Frequency**: 13.5156 GHz
- **Resolution**: 50 km X 50 km
- **Polarisation**: HHI (Inner) and VV (Outer)
- **Antenna**: Parabola of 1.0 m Dia
- **Scanning Rate**: 20.5 rpm
- **Data Rate**: 13.11 Mbit/sec (Raw), 74.4 Kbit/Sec (Processed)
- **Transmit Power**: 100 W Peak
- **Swath**: 1400 km
- **Wind Speed Range**: 4 to 24 m/s
- **Wind Speed Accuracy**: 2 m/sec or 10% (Whichever is higher)
- **Wind Direction Accuracy**: 20 deg RMS
CARTOSAT-1 Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>618 km high, circular Polar Sun Synchronous</td>
</tr>
<tr>
<td>Orbit inclination</td>
<td>98.87 deg</td>
</tr>
<tr>
<td>Orbit period</td>
<td>97 min</td>
</tr>
<tr>
<td>Number of orbits per day</td>
<td>14</td>
</tr>
<tr>
<td>Local time of equator crossing</td>
<td>10.30 AM</td>
</tr>
<tr>
<td>Repetivity</td>
<td>126 days</td>
</tr>
<tr>
<td>Revisit</td>
<td>5 days</td>
</tr>
<tr>
<td>Lift-off mass</td>
<td>1560 kg</td>
</tr>
<tr>
<td>Attitude and orbit control</td>
<td>3-axis body stabilised using Reaction Wheels,</td>
</tr>
<tr>
<td></td>
<td>Magnetic Torquers and Hydrazine Thrusters</td>
</tr>
<tr>
<td>Electrical power</td>
<td>15 sq m Solar Array generating 1100 W, Two 24 Ah Ni-Cd batteries</td>
</tr>
<tr>
<td>Mission life</td>
<td>5 years</td>
</tr>
</tbody>
</table>

Payloads

- Two PAN Cameras
 - PAN fore mounted with a tilt of +26 deg
 - PAN aft mounted with a tilt of - 5 deg from the yaw axis to generate stereoscopic imagery

Instantaneous Geometric Field of View (IGFOV)

- < 2.5 m

- Swath: 30 km
- Spectral Band: 0.50-0.85 Micron
- Data rate: 105 Mbps for each camera
- Solid State Recorder: 120 GB capacity for image data storage
CARTOSAT – 2 / 2A

- Altitude: 630 km / 638 km*
- Inclination: 97.91 deg / 97.94 deg*
- Period: 97.4 minutes
- Local time (D): 9.30 am
- Orbits.day: 14
- Revisit / Repetivity: 4 days / 310 days
- Lift-off mass: 680 kg
- Payload: Panchromatic Camera
- Operational Life: 5 Years

- CARTOSAT 2/2A PAN SENSOR
 - Spectral Range: 0.5 – 0.85
 - Spatial Res.: <1m (81cm nom.)
 - Swath: 9.6 km
 - SSR: 64 GB
 - Data Rate: 336 MBPS
 - On-board Comp.: 3.2:1
 - Transmission: 105 MBPS
CARTOSAT - 2

• High Resolution PAN imaging
 – SWATH (km) : 10
 – SNR : ≥ 180
 – IGFOV (m) : 0.8
 – SWR (%) : ≥ 10

Step and Stare imaging
Indian Mini Series-1/ IMS-1

- **ORBIT**: Polar sun synchronous
- **ALTITUDE**: 635 km
- **MISSION LIFE**: 2 km
- **DIMENSION**: 0.604 x 0.980 x 1.129
- **MASS**: 83 kg
- **POWER**: 2 Sol panel/ 220W
- **DATA STORAGE**: 16 Gb SSR

HySI Payload
- **TYPE**: Hypersp. Camera
- **SPECTRAL**: (0.4 – 0.95 µm)
- **NO. BANDS**: 64 fixed bands
- **SPECTRAL Res.**: 8 nanometer
- **SPATIAL Res.**: 505.6 m
- **SWATH**: 129.5 km
- **MASS**: 3.4 kg

Mx Payload
- **TYPE**: 4 Band MX CCD Camera
- **SPECTRAL**: B1 (0.45 – 0.52 µm)
- **BANDS**: B2 (0.52 – 0.59 µm)
 - B3 (0.62 – 0.68 µm)
 - B4 (0.77 – 0.86 µm)
- **RESOLUTION**: 37 m
- **SWATH**: 151 km
- **MASS**: 5.9 kg
RISAT

<table>
<thead>
<tr>
<th>ALTITUDE</th>
<th>586.87 KM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY</td>
<td>5.35 Ghz</td>
</tr>
<tr>
<td>ORBIT</td>
<td>SUN SYNCHRONOUS</td>
</tr>
<tr>
<td>POLARISATION</td>
<td>SINGLE / DUAL/ QUAD POLARISATION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOLUTION (IN METER)</th>
<th>SINGLE POL</th>
<th>DUAL POL</th>
<th>QUAD POL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HH / HV / VV / VH.</td>
<td>HH+HV / VV+VH</td>
<td>HH+HV+VV+VH</td>
</tr>
<tr>
<td>High Resolution Spotlight</td>
<td>Azimuth 1 m</td>
<td>Azimuth 1 m</td>
<td></td>
</tr>
<tr>
<td>HRS</td>
<td>Sl. Range 0.7 m</td>
<td>Sl. Range 0.7 m</td>
<td></td>
</tr>
<tr>
<td>Fine Resolution Strip map</td>
<td>Azimuth 3 m</td>
<td>Azimuth 3 m</td>
<td>Azimuth 9 m</td>
</tr>
<tr>
<td>FRS</td>
<td>Sl. Range 2 m</td>
<td>Sl. Range 2 m</td>
<td>Sl. Range 4 m</td>
</tr>
<tr>
<td>Medium Resolution SCANSAR</td>
<td>Azimuth 24 m</td>
<td>Azimuth 24 m</td>
<td></td>
</tr>
<tr>
<td>MRS</td>
<td>Sl. Range 8 m</td>
<td>Sl. Range 8 m</td>
<td></td>
</tr>
<tr>
<td>Coarse Resolution SCANSAR</td>
<td>Azimuth 50 m</td>
<td>Azimuth 50 m</td>
<td></td>
</tr>
<tr>
<td>CRS</td>
<td>Sl. Range 8 m</td>
<td>Sl. Range 8 m</td>
<td></td>
</tr>
<tr>
<td>SWATH (IN km)</td>
<td>10 km x 10 km</td>
<td>SPOT (HRS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 km</td>
<td>STRIP (FRS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120 km</td>
<td>STRIP (MRS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>240 km</td>
<td>STRIP (CRS)</td>
<td></td>
</tr>
<tr>
<td>LOOK ANGLE COVERAGE</td>
<td>18.7 degrees to 44.3 degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCIDENCE ANGLE COVERAGE</td>
<td>20.5 degrees to 49.7 degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWATH SELECTABILITY</td>
<td>EITHER SIDE OF FLIGHT DIRECTION FROM 200 km TO 600 km FROM THE SUBSATELLITE TRACK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NO. OF BEAMS</td>
<td>41</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>ON BOARD STORAGE</td>
<td>240 Gbits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Imaging SAR : RISAT

Operating Frequency: 5.35 GHz

- High Resolution Spotlight (HRS)
- Fine Resolution Stripmap-1 (FRS-1)
- Fine Resolution Stripmap-2 (FRS-2)
- Medium Resolution Scansar (MRS)
- Coarse Resolution Scansar (CRS)

<table>
<thead>
<tr>
<th>Mode</th>
<th>FRS-1</th>
<th>FRS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swath (km)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Res. (m)</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Pol.</td>
<td>Single/Dual</td>
<td>Quad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swath (km x km)</td>
<td>10 x 10</td>
</tr>
<tr>
<td>Res. (m)</td>
<td>1</td>
</tr>
<tr>
<td>Pol.</td>
<td>Single/Dual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>MRS</th>
<th>CRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swath (km)</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>Res. (m)</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Pol.</td>
<td>Single/Dual</td>
<td>Single/Dual</td>
</tr>
</tbody>
</table>
Geostationary Operational Met. Satellites

- INSAT – 1 Series 1982-90 (1A/ 1B/ 1C/ 1D); INSAT – 2 Series 1991-95 (2A/ 2B/ 2C/ 2D); **VHRR**
 - Visible 2.75 km
 - IR 11 km

- INSAT – 2E; INSAT – 3A; VHRR + CCD
 - VHRR: Visible 2 km, IR 8 km
 - CCD: Multispectral 3band, 1 km

- KALPANA (Met only payload), 2002, VHRR
Megha-Tropiques - A Joint ISRO-CNES Mission

For studying water cycle and energy exchanges in tropical regions

Launch: 12 Oct 2011

Low inclination (20º) for frequent simultaneous observations of tropics
- Water vapour, Clouds
- Cloud condensed water,
- Precipitation, Evaporation

Contribution to Global Precipitation Mission (GPM)

<table>
<thead>
<tr>
<th>Payload</th>
<th>Type</th>
<th>Characteristic</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADRAS</td>
<td>Microwave imager</td>
<td>Five Frequency, 9-channel Microwave imager 18, 23, 36, 89 and 157 Ghz All in V and H Polarisations except for 23 GHz (V only)</td>
<td>Surface wind speed, total water vapour, cloud liquid water, rainfall, cloud ice</td>
</tr>
<tr>
<td>SAPHIR</td>
<td>Sounder</td>
<td>Six-channel millimetre wave Humidity sounder at 183 Ghz (Water vapour Resonance Frequency)</td>
<td>Vertical humidity profiling at 6 altitudes with good horizontal resolution</td>
</tr>
<tr>
<td>SCARAB</td>
<td>Scanner</td>
<td>Four-channel Earth radiation budget instrument 0.5-0.7 μm, 0.2-4 μm, 10.5-12.5 μm, 0.2-200 μm, with a spatial resolution of 40 km</td>
<td>Long-wave radiation fluxes</td>
</tr>
<tr>
<td>ROSA</td>
<td>Sounder</td>
<td>Radio Occultation System to obtain vertical profiles of humidity, temperature, Aerosol contents, etc., GPS receivers at L1 and L2 channels</td>
<td>Vertical profiles of humidity, temperature, and aerosol contents with good vertical resolution</td>
</tr>
</tbody>
</table>
Initial Megha-Tropiques data products

SAPHIR Relative Humidity – Two Layers

MADRAS BT Data

SAPHIR CHANNEL 4, ORB.15_16, DOP_13Oct2011, BRIGHTNESS, TEMPERATURE, DEG.K

MADRAS GP Data

MT-MADRAS Water Vapour (g/cm**2) – Oct. 14-15 2011
FUTURE EO SATELLITES & SENSORS

SARAL (2013)
INSAT 3D (2013)

Resourcesat – 2A, GISAT, Oceansat – 3,
RISAT – 1A, Cartosat – 2C
EO – Near Future Satellites

SARAL
Satellite with ARgos and ALtika - Joint ISRO-CNES Mission

Payloads
- Ka-band Altimeter (~35.5GHz)
- Dual freq Radiometer (23.8/36.8 GHz)

Status
- Launch by PSLV in early 2013

GISAT
Multiple acquisition capability from a Geosynchronous Orbit

Payloads
- High resolution multi-spectral VNIR (HRMX-VNIR): 50m Res.
- Hyper spectral VNIR & SWIR: 320m and 192m Res.
- High resolution Multi-spectral (HRMX-TIR): 1.5km Res.

Status
- Launch by PSLV during 2016-17

INSAT - 3D
For improved understanding of weather systems

Payloads
- 19 channel Sounder
- 6 Channel Imager

Status
- Launch by 2013

Resourcesat-2A
Land and Water Resources Applications – Continuity Mission

Payloads
- LISS IV Mx, LISS III and AWiFS

Status
- Launch by PSLV during 2015-16

Followed by satellites with high resolution cameras, hyperspectral sensors, Oceansat-3,...
ISRO contribution: CEOS Virtual Constellations

- Land Surface Imaging (LSI) – Resourcesat-2
- Ocean Colour Radiometry (OCR) – Oceansat-2 OCM
- Ocean Surface Vector Wind (OSVW) - Oceansat-2 Scatterometer
- Precipitation (PC) – Megha-Tropiques
- Ocean Surface Topography (OST) – SARAL
- Sea Surface Temperature (SST-VC) - (under discussion)
- Atmospheric Composition (ACC)
Thank You

V K Dadhwal
Director
NRSC / ISRO
Hyderabad, INDIA

director@nrsc.gov.in
http://www.nrsc.gov.in
SARAL : Satellite for ARGOS & ALTIFA
INSAT 3D

Sounder

19 channel Sounder

Imager

Advanced 6-channel imager

Sounder: 19 channels with spatial resolution of 10 km
Imager: 6 channel with spatial resolution of 1 km to 8 km

Applications: Improved estimation of water vapour content, cloud, wind vector, upper tropospheric humidity, sea surface temperature and surface insolation

INSAT-3D Weighting Function over Indian Region (July)
INSAT 3D: IMAGER: 6 Band

<table>
<thead>
<tr>
<th>Band No.</th>
<th>Spectrum (mm)</th>
<th>IGFOV (km)</th>
<th>S/N/ Or NEDT (K)</th>
<th>Scene Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.55-0.75</td>
<td>1</td>
<td>150:1</td>
<td>100% albedo</td>
</tr>
<tr>
<td>2</td>
<td>1.55-1.70</td>
<td>1</td>
<td>150:1</td>
<td>100% albedo</td>
</tr>
<tr>
<td>3</td>
<td>3.80-4.00</td>
<td>4</td>
<td>1.40 K</td>
<td>300 K</td>
</tr>
<tr>
<td>4</td>
<td>6.50-7.00</td>
<td>8</td>
<td>1.00 K</td>
<td>230 K</td>
</tr>
<tr>
<td>5</td>
<td>10.2-11.3</td>
<td>4</td>
<td>0.35 K</td>
<td>300 K</td>
</tr>
<tr>
<td>6</td>
<td>11.5-12.5</td>
<td>4</td>
<td>0.35 K</td>
<td>300 K</td>
</tr>
</tbody>
</table>