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ABSTRACT

Remote sensing data and techniques are reliable tools for monitoring and studying urban land cover and land use
(LCLU) change. Fine spatial resolution (FRes) commercial satellite image in conjunction with geographic object-
based image change analysis (GEOBICA) methods have been used to generate detailed and accurate urban LCLU
maps. The integration of a backdating approach improves LCLU change classification results for the first date of a
bi-temporal image sequences. Conversely, moderate spatial resolution satellite images such as those from
Landsat sensors may not allow for detailed urban land use and land cover mapping. The objective of this study is
to test a new bi-temporal change identification approach that integrates image classification of fine spatial
resolution satellite imagery at time-2 and moderate spatial resolution satellite imagery (Landsat) at time-1, in a
backdating and GEOBICA framework for mapping urban land use change. We compare the results from this
approach to those of a GEOBICA approach based on fine spatial resolution imagery in both periods. The overall
accuracy of the time-1 Landsat image classification is 0.82 and that of the fine spatial resolution image is 0.87.
Moreover, the overall accuracy of the areal change data estimated from the pixel-wise spatial overlay of bi-
temporal FRes LCLU maps is 0.80 while that from overlaying a time-2 FRes-generated map to that from a Landsat
time-1 image is 0.81. The proposed method can be used in areas that lack FRes data due to limited coverage in

the early 2000s.

1. Introduction

The exponential growth of the human population within the last
two hundred years has caused important changes in the natural and
built environments. The majority of the world's population now lives in
urban centers, a shift from the past when people primarily lived in rural
areas. Urban centers not only modify the natural environment that they
are replacing, they also affect the well-being of the population living
within them. Monitoring urban land cover and land use change is
therefore important.

Remote sensing data of varying spatial resolutions and image
change analysis techniques have been used to monitor changes in the
urban environment. The spatial resolution of the dataset used in urban
land cover and land use change (LCLUC) studies influences the level of
detail of classification schemes and the accuracy of resulting maps.
Momeni et al. (2016) compared the influence of spatial resolution,
spectral band set and classification approach for mapping detailed
urban land cover in Nottingham, UK, and found the spatial resolution to
clearly be “the most influential factor when mapping complex urban
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environments.” They concluded that image classifications with Landsat
and similar moderate spatial resolution satellite systems were often
limited to a general urban class, while very fine spatial resolution
(VHR) imagery allowed for the discrimination of many urban land use
sub-types. Other urban studies confirm their analysis. For example,
Wang et al. (2012) used Landsat TM/ETM + data to map the urban
expansion in China between 1990 and 2010. Urban areas, bare soil,
bodies of water, and vegetation were their main mapping categories.
Odindi et al. (2012) used Landsat 5 TM data to monitor major land
cover and land use changes in Port Elizabeth, South Africa between
1990 and 2000. They applied a post-classification comparison approach
to change identification approach (Jensen, 2016) to monitor the built
up, bare surface, green vegetation, beach or dune, and water classes. On
the other hand, Ma et al. (2015) mapped eight land cover and land use
classes based on Chinese advanced fine-spatial resolution satellite
imagery and an object-oriented approach. Their classification scheme
included the residential, commercial/Industrial, and transportation
classes. Bouziani et al. (2010) developed an automated multispectral
segmentation algorithm by integrating existing digital maps and
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spectral data. They also mapped detailed urban land use/land cover
classes based on fine spatial IKONOS and QuickBird imagery.

Change detection can be performed through pixel- and object-based
approaches. Several studies have demonstrated the advantages asso-
ciated with geographic object-based image change analysis (GEOBICA)
(Stow, 2009) compared to traditional per-pixel based change detection
(Myint et al., 2011; Zhou et al., 2008). Geographic object-based image
analysis (GEOBIA) (Hay and Castilla, 2008) approaches to image clas-
sification allow for multi-scale image analysis, more types of image
features to be exploited for classification, and a great reduction in the
occurrence of small, spurious pixel changes (Chen et al., 2012). Stow
(2009) detailed the two general types of GEOBICA approaches to land
cover and land use change mapping: 1) post-classification comparison
where two separate GEOBIA land cover and land use maps are gener-
ated and spatially cross-tabulated, and 2) a multi-temporal layer stack
approach where images for more than one date are segmented and
resultant objects are classified as either land cover and land use tran-
sition classes or as no change. Multi-temporal time series of land cover
maps can be generated by updating (projecting forward in time) and
backdating (projecting backward in time) (Linke et al., 2009). Xian
et al. (2009) developed a method to update the 2001 national land
cover dataset (NLCD) to 2006. The method consists in identifying areas
of land cover change occurring after 2001 and updating only those
areas. For the areas that did not change, the original NLCD 2001 pro-
duct is unchanged. In the updating/backdating approach, an existing
map (often called the base map) is used as a starting point upon which
subsequent classifications and change analyses are conducted. This
approach has been shown to be both efficient and accurate (Linke et al.,
2009; Xian et al., 2009). Yu et al. (2016) integrated the concept of
updating/backdating with a GEOBICA approach to analyze land cover
and land use change for the city of Beijing between 2001 and 2009.
They found that the integration of the updating/backdating method to
GEOBICA produced greater overall classification accuracies compared
to an integration between the updating/backdating approach to a pixel-
based analysis. They also found that the GEOBICA backdating approach
greatly increased efficiency by focusing only on locations with changes.
Toure et al. (2016) also integrated the backdating approach with
GEOBICA and called it an object-based temporal inversion approach to
urban land use change analysis. They also found that this approach
improved the accuracy of time-1 LCLU maps, as well as that of the land
use change classification products generated from fine spatial resolu-
tion satellite data for both dates of a bi-temporal image pair.

Past GEOBICA studies have involved datasets with similar spatial
resolutions in time 1 and 2. Both the Yu et al. (2016) and Toure et al.
(2016) studies that incorporated the backdating approach with GEO-
BICA, were based on datasets with similar spatial resolutions. Similarity
includes near-anniversary dates of image capture, similar spatial,
spectral, and radiometric resolutions, and approximately the same ex-
tents of coverage. However, this is not always achievable. No studies
reported in the literature have used bi-temporal satellite images having
very different spatial resolutions with a GEOBICA approach to land
cover and land use change analysis. One reason is the unavailability of
newer generation fine spatial resolution satellite imagery for historical
dates. For example, fine spatial resolution imagery such as QuickBird or
IKONOS became commercially available only in the late 1990s and
early 2000s. Therefore, it is not possible to use them in change analyses
that involve a date prior to 1999. Moreover, tropical regions of the
world are affected with persistent cloud cover throughout most of the
year, which makes it difficult to capture cloud-free and fine quality
satellite imagery. Finally, commercial satellite coverage is partially
driven by market potential; developing countries such as Ghana, the
country within which our study area is located, may not have been
considered a high value market such that tasking and capturing ima-
gery for such countries occurred less frequently at the start of the
commercial satellite era (c.2000).

Updating (projecting forward in time) and backdating (projecting
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backward in time) require a very accurate base map that provides
partial basis for generating the land cover and land use map re-
presenting the other point in time. For example, the National Land
Cover Database (NLCD) 2001 base map used to create the NLCD 2006
through the updating process is based primarily on a decision-tree
classification of ¢.2001 Landsat satellite data and is comprised of three
elements: land cover, percent developed impervious surface and per-
cent tree canopy density. It does not contain a detailed urban land use
classification scheme. Obtaining land use classes more specific than
developed impervious will require dataset that have finer spatial re-
solutions than Landsat, and such fine spatial resolution images are more
available after 2000. Backdating would be more appropriate in change
identification studies that have finer spatial resolution data for the later
period.

The objective of this paper is to test the accuracy of performing land
cover and land use change analysis with a fine spatial resolution ima-
gery for the second period and moderate resolution (Landsat 7 ETM +)
imagery for the first period using an integrated backdating and
GEOBICA approach. Specifically, the research questions are:

1. What is the utility of a post-classification change identification ap-
proach that is based on an initial object-based classification of a fine
spatial resolution time-2 image, which is used to constrain the
segmentation and subsequent classification of a time-1 moderate
spatial resolution image?; and

. Given the classes of interest (residential, non-residential, and non-
built) for our broader study of drivers and impacts of land cover and
land use change in major urban areas of Ghana, how accurately can
land use be mapped based on Landsat ETM + moderate spatial re-
solution satellite imagery?

2. Methodology

2.1. Study area and data

The study area is located in the Greater Accra region in southern
Ghana (Fig. 1). The 545-km? study area consists of the entire Accra
Metropolitan Area (AMA) and parts of seven other census districts: GA
West, Ga East, Ga South, Ledzokuku/KROWOR, Adenta, Tema, and
Ashaiman. Accra, the capital city of Ghana has experienced substantial
population growth and built-up land since the country's independence
in 1957. The population of Ghana grew from 5 million in 1950 to 25
million in 2010 (Ghana Statistical Services, 2012). Most of the popu-
lation growth occurred in urban centers due to natural growth and
internal migration. Only 15% of the population lived in urban areas in
1950 compared to 52% in 2010. The total urban area of Accra and its
surrounding suburbs, regardless of the administrative boundaries,
covered 216km® in 1985, 276km> in 1991, and 555km” in 2002
(Mpller-Jensen et al., 2005). The climate of the study area is tropical
wet and dry and varies along an aridity gradient from the wetter coastal
areas to drier parts inland. The prevalence of persistent cloud cover
throughout the year as well as the harmattan, a dry, dust-laden wind in
November—March, limits the availability of clear images. The equatorial
vegetation that once covered the study area has been replaced by ha-
bitation, secondary forests, agricultural development and shrub thicket
(Stow et al., 2016).

The study period for this research is the decade between 2000 and
2010. The period was selected as to coincide with the Ghanaian po-
pulation and housing census, and to correspond with the availability of
fine spatial resolution commercial satellite imagery for some portions of
the study area.

Information about the data used in the study is listed in Table 1.
Five and eight fine spatial resolution commercial satellite images were
selected for the time period ¢.2000 and c.2010 respectively. These
image data were made available to us at no cost through a NASA and
National Geospatial Intelligence Agency (NGA) agreement. It was
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Fig. 1. Study area. (a) Greater Accra region within Ghana; (b) study area within the greater Accra region. Polygons represent districts.

Table 1
List of image data set used in the study.

Satellite sensor ~ Temporal coverage Spectral Spatial resolution
bands

Landsat ETM + 2002 VNIR, SWIR 30m MS, 15m PAN

IKONOS 2000 February 10 VNIR 3.2m MS, 0.8 m PAN

QuickBird-2 2002 April 12 VNIR 2.4m MS, 0.6 m PAN

IKONOS 2002 May 22 VNIR 3.2m MS, 0.8 m PAN

QuickBird-2 2003 December 18 VNIR 2.4m MS, 0.6 m PAN

IKONOS 2004 April 10 VNIR 3.2m MS, 0.8 m PAN

QuickBird-2 2009 April 15 VNIR 2.4m MS, 0.6 m PAN

WorldView-02 2010 January 12 VNIR 1.8m MS, 0.46 m
PAN

QuickBird-2 2010 January 13 VNIR 2.4m MS, 0.6 m PAN

GeoEye-1 2010 February 15 VNIR 1.65m MS, 0.4 m
PAN

WorldView-02 2010 March 27 VNIR 1.8m MS, 0.46 m
PAN

GeoEye-1 2010 April 13 (3 VNIR 1.65 MS, 0.4 m PAN

images)

necessary to use several images for both dates to cover the entire study
area and to substitute or composite areas having cloud cover. The
¢.2000 images cover the period 2000-2004 while seven of the time-2
(c.2010) images were taken in 2010 and one in 2009. These included
multispectral image data from IKONOS, QuickBird, WorldView-02, and
GeoEye satellite imaging systems, with spatial resolutions varying be-
tween 1.65m and 3.4 m. All images have a panchromatic band and at
least three visible (V) and one near infrared (NIR) multispectral bands,
except the WorldView-02 images which have eight multispectral bands.
A Landsat 7 ETM + satellite image acquired on December 26, 2002 was
used for the time-1 period; this is the only completely cloud-free ETM +
image covering the study area captured between 1999 and 2013. ETM
+ images have a nominal spatial resolution of 30m and can be

obtained in an orthorectified format at Level 1 T from the Land Pro-
cessed Data Active Archive Center. ETM + images have seven multi-
spectral bands and one panchromatic band of 15 m. The ETM + thermal
infrared band (6) was not utilized.

The fine spatial resolution satellite images were orthorectified to
provide accurate spatial positioning between the multitemporal images.
Horizontal ground control points (GCPs) were selected from
DigitalGlobe images available in Google Earth. Elevations for GCPs
were extracted from NEXTMap World 30, a digital elevation data pur-
chased from Intermap. The GCPs were then incorporated into the or-
thorectification process, with bi-linear interpolation algorithm and a
second-order polynomial refinement of image registration.

We are interested in knowing the major urban landscape features,
and how the physical environment is affected by urban development.
Therefore, the major land use types in our classification scheme include
residential built (residential for short), non-residential built (non-re-
sidential for short), and non-built categories, while the land cover
classes that compose land use units are vegetation, impervious and soil.
The residential class includes high and low socio-economic status
neighborhoods, or other places where people primarily reside.
Industries, institutions such as school and office buildings, commercial
areas and ports are all included in the non-residential class. The non-
built class includes places such as agricultural plots, or undeveloped
areas.

Vector GIS data representing the streets of Accra were downloaded
from the Open Street Map (OSM) website and used as auxiliary data.
Street data were used in the segmentation phase to generate regularly
shaped land use objects. Their attributes were also used as additional
feature inputs to aid in classifying land use classes. OSMs are user-
generated street maps that follow the peer production model created by
Wikipedia (Haklay and Weber, 2008). Contributors to the OSM project
use areal imagery, GPS devices, and other tools in order to ensure the
accuracy of OSM maps (http://www.openstreetmap.org/about).
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Fig. 2. General classification strategy. V-I-S: Vegetation, impervious, soil. FRes: fine resolution.

2.2. Image processing

The general image classification and change estimation processing
flow for the study is shown in Fig. 2. It consists of generating two dif-
ferent land use change maps and comparing their results. One land use
change map was generated by comparing fine spatial resolution ima-
gery in time-1 and time-2. The other was produced by comparing fine
spatial resolution images in time-2 to a moderate spatial resolution
Landsat image in time-1. We adopted an OBIA approach using eCog-
nition software to segment and classify all the images. The time-2
images were first classified and the classification results were in-
corporated into the time-1 classification procedures using the back-
dating approach. The following sections describe in detail the classifi-
cation procedures for each image in their respective order.

2.2.1. ¢.2010 FRes land use classification

Eight multispectral images from c.2010 were classified individually
using the same procedures, and the resultant land use (LU) maps were
mosaicked to create a single time-2 (c.2010) product. Four steps con-
stituted the general workflow: 1) Vegetation-Impervious-Soil (VIS)
classification, 2) buildings classification, 3) integration of the buildings
and the VIS classification products, and 4) land use classification. The
VIS classification was necessary to differentiate developed from non-
built land uses. We classified buildings and their size to separate re-
sidential land use from non-residential land use. We found in a pre-
liminary analysis of the study area that large buildings were char-
acteristics of the non-residential land use type. We adopted and
modified the classification strategy of Toure et al. (2016). The proce-
dures followed the three general steps of OBIA, which are segmenta-
tion, classification, and generalization. Two maps of differing scale
hierarchy were generated for all multispectral images, a finer-scale
(Level I) map and a coarser-scale (Level II) land use map. The target
classes in Level I were vegetation, impervious, and soil classes. A
building class was also added to the Level I classification for the c.2010
images. The target land use classes in Level II were residential, non-
residential, and non-built. The Level I objects were sub-objects of the
Level II land use objects.

We first created the Level II segments with the multiresolution
segmentation algorithm. The segmentation was constrained by using
the OSM roads layer as auxiliary data, such that the resulting land use
objects corresponded to city blocks naturally occurring in the city. The
specific scale parameters were different from image to image because
they have different spatial resolutions. However, we included all the
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multispectral bands of each image during the segmentation phase, and
kept the compactness and shape index values constant at 0.5 and 0.5
respectively. The VIS segments were then created as sub-objects to the
land use segments with the multiresolution segmentation algorithm.

After the segmentation stage, Level I image objects were classified
as either vegetation, impervious, or soil. The vegetation class was se-
parated from other non-vegetation categories by using the normalized
difference vegetation index (NDVI). NDVI thresholds were chosen in-
teractively and were different for each image. The remaining image
objects were classified as either impervious or soil. It was sometimes
necessary to create two spectral sub-classes, (dark and light) for im-
pervious and soil classes because they appear different throughout the
study area. Brightness, red, green, blue, NDVI, NDWI, and the Red/
Green normalized difference index were the features used to define and
separate the four subclasses. Normalized Difference Water Index
(NDWI) is calculated as (Green — NIR)/(Green + NIR) (McFeeters,
1996) while the Red/Green normalized difference index is calculated as
(Red Edge — Green)/(Red Edge + Green), (Belgiu et al., 2014). Object
classification was based on the combination of the mean feature values
of each segment. We classified the remaining image objects after the
class definition phase.

Buildings were classified separately to increase efficiency and
computational speed. We used the fused panchromatic and multi-
spectral (i.e., pan-sharpened) images for the classification. A pan-
sharpened image was created for each fine spatial resolution image
using the multiple routines in ERDAS Imagine software. The
WorldView-02 images were pan-sharpened using the Hyperspherical
Color Space (HCS) Resolution Merge algorithm. We used the
Subtractive Resolution Merge algorithm to pan-sharpen the QuickBird,
Ikonos, and GeoEye-1 images. The strategy with the building classifi-
cation phase was to first mask out non-building elements, and then
focus on the buildings. NDVI was used to classify the vegetation class.
We classified the roads by first segmenting the images with the multi-
resolution segmentation algorithm and using the OSM vector layer as a
thematic layer. The segmentation scale parameter was kept below 25
for the different images while the shape and compactness criteria were
0.5 and 0.5 respectively. Image objects that touched roads from the
road layer were assigned to the road class. The green spectral band was
used to differentiate shadow from non-shadow elements. Segments with
relatively small mean green values were classified as shadow in certain
images. The remaining unclassified image-objects were merged. The
bright and dark edges in the unclassified area were enhanced using
edge extraction algorithms. The edge enhanced image was then
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segmented and classified into edges inside bright objects and edges
outside bright objects. Non-building edges were removed by applying
the following conditions. Any bright edge objects that were beyond a
threshold distance from any dark edge objects were unclassified, while
any dark edge objects beyond the threshold from any bright edge ob-
jects were also unclassified. Building objects were constituted as any
unclassified areas that were completely enclosed by an edge object. The
objects classified as buildings were merged and exported as thematic
raster data.

The building objects file was integrated as a thematic layer with the
VIS classification product, such that the VIS level (Level 1), a level with
image objects that are sub-objects to the land use (Level II) objects, had
four classes for the ¢.2010 classification: vegetation, impervious, soil,
and buildings. We then implemented a rule stating that any image
object classified as impervious and spatially corresponding to a building
is assigned to the building class.

Level II segments were classified as a residential, non-residential, or
non-built land use category through a series of rules with the vegeta-
tion-impervious-soil and building classification as input. The presence/
absence or abundance of edges in the image was also an important
factor in discriminating between the different land use types. We used
the Sobel filter (Gupta and Mazumdar, 2013), an edge-detection algo-
rithm, to enhance edges in the image. We created a new image layer
called SobelRed by applying the Sobel Edge Filter algorithm to the red
band with a window size of 3 X 3 to the unclassified image objects.
Segments having =90% vegetation and soil areal cover were classified
as non-built. Segments having small mean SobelRed values, an indica-
tion of the presence of few built-up structures, were also classified as
non-built. A Level II image object with a relatively large mean building
size was classified as non-residential. The sizes of buildings were de-
termined through preliminary analysis to be an important indicator of
non-residential areas. Moreover, image texture was also a good dis-
criminator of the non-residential land use. We adopted a statistical
method of examining texture that considers the spatial relationship of
pixels called the gray-level co-occurrence matrix (GLCM). Larger values
of the GLCM homogeneity feature indicated non-residential areas. Fi-
nally, the remaining Level Il segments were classified as residential. The
resultant classification product was exported as a vector layer and used
as a thematic input to the classification of the ¢.2000 fine spatial re-
solution and moderate spatial resolution images.

2.2.2. ¢.2000 FRes land use classification and change identification

The fine spatial resolution images dating from ¢.2000 were classi-
fied individually and then mosaicked to create a single ¢.2000 land use
product. We followed the same land cover and land use classification
steps described above for the ¢.2010 images, but integrated the ¢.2010
classification results through the backdating approach. We first created
Level II land use image-objects by applying the multiresolution seg-
mentation algorithm. However, we used the ¢.2010 classification result
as thematic layer such that the ¢.2000 segments either followed the
¢.2010 image objects boundaries or were completely contained within
them. We maintained the shape and compactness criterion at 0.5 and
0.5 respectively for all images. We chose scale parameters that would
create image objects with sizes as large as the ¢.2010 image objects or
smaller; these parameter values varied between 50 and 200. Once the
Level I image objects were created, we created Level I VIS sub-objects
in a similar manner as for the time-2 images. We then classified Level I
image objects as vegetation, impervious, soil, with the methods de-
scribed above.

The land use classification of the ¢.2000 Level II image objects was
achieved through backdating. We first located areas of no change.
Undeveloped areas in 2010 were almost certainly non-built in 2000. We
therefore assigned to the non-built class any ¢.2000 areas that were
classified as non-built in the ¢.2010 map. We then classified other non-
built areas in the ¢.2000 images through the series of rules described
above for ¢.2010. The remaining areas were classified as residential or
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non-residential through the backdating approach. Areas classified as
residential and non-residential in the ¢.2010 map were assigned to the
residential and non-residential classes respectively in 2000.

We estimated areas that developed to urban (residential or non-re-
sidential) between 2000 and 2010. Any areas classified as non-built in
2000 and residential in 2010 were assigned to the to Residential class
while non-built areas classified as non-residential in 2010 were classified
as to Non-Residential.

2.2.3. ¢.2000 Landsat land use classification and change identification

The land use classification of the moderate spatial resolution
Landsat image was conducted in a similar manner to that of the ¢.2000
fine resolution images. We first created level II land use objects by
applying the multiresolution segmentation algorithm with the ¢.2010
map as thematic layer. The shape and compactness criterion selected
interactively were both 5. A scale parameter of 100 was selected, which
is smaller than that of the fine spatial resolution images because of the
difference in spatial resolutions. We then created level I VIS objects as
sub-objects to the level II with the multiresolution segmentation rou-
tine. We classified these Level I segments as vegetation, impervious, and
soil. NDVI was used to classify the vegetation as with the fine spatial
resolution imagery, while the input features used to classify the soil and
impervious classes were different in the case of the Landsat image. The
green and SWIR1 spectral bands, combined with the fuzzy operator
AND, were used as classification feature inputs.

The land use classification and change identification procedures for
mixed spatial resolution images were similar to that of the ¢.2000 FRes
data. Areas classified as non-built in 2010 were considered non-built in
2000. Places having 90% or more of vegetation and soil or areas with
small mean SobelRed value were also classified as non-built. The re-
maining developed areas were classified as either residential or non-
residential following their classification in 2010 through the backdating
approach. Places classified as non-built in 2000 and classified as re-
sidential and non-residential in 2010 were assigned to the to residential
and to non-residential classes respectively in the change map.

2.3. Accuracy assessment

We performed an accuracy assessment on the land use classification
products from Landsat (time-1) and the fine spatial resolution satellite
(time-1 and 2) image sets, as well as the two land use change (LUC)
maps generated from different time-1 maps. We designed the accuracy
assessment with the objectives of estimating overall and class-specific
accuracies, areas of the individual classes (as estimated by the reference
classification), and confidence intervals for each accuracy and area
parameter. The spatial unit of assessment was a square polygon of size
100 m X 100 m.

We implemented procedures in Olofsson et al. (2014) for the ac-
curacy assessment in this study. We adopted a stratified random sam-
pling design with the classes of the maps as strata because it satisfies the
accuracy assessment and area estimation objectives. We used the
equation provided by Cochran (1977, Eq. (5.25)) to determine the
samples sizes (n):

)

where W; is the proportion area for each class i, and S; is the standard
deviation of the user's accuracy of stratum i, and S(O) is the standard
error of the estimated overall accuracy that we sought to achieve. From
Eq. (1), we selected a sample size of about 1000 (n = 998). We allo-
cated 100 sample units to each of the change classes. The number of
sample units for the remaining classes was determined by multiplying
their respective areas by a constant selected interactively. Table 2
shows the distribution of sample units per class and map type.

The reference data used for the accuracy assessment were generated
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Table 2
Sample size distributions of accuracy assessment units per class and map type.
FRes = fine resolution. n = 998.

c.2010 ¢.2000 Fres. Landsat FRes to FRes to
FRes. 2002 FRes Landsat
change change
map map
1. Residential 485 385 385 385 385
2. Non- 210 110 110 110 110
residential
3. Non-built 303 503 503 303 303
4. Non-built to 100 100
residential
5. Non-built to 100 100

non-
residential

by visual interpretation of the original fine spatial resolution images,
along with Google Earth historical images acquired around the time-1
date, by an independent interpreter who is familiar with land use types
of the study area. The good practice recommendations of Olofsson et al.
(2014) states that if the same data are used to generate both the map
and reference classifications, the process of creating the reference data
should be of a higher quality than a satellite-based land cover and land
use map, in terms of accuracy and reliability. The sample units were
visually interpreted and land use class recorded by a well-trained
analyst not familiar with the map products. We assumed that visual
interpretation and manual classification would produce better base
maps than the maps produced through supervised classification by in-
tegrating the GEOBICA and backdating approach. Despite the greater
degree of confidence in the reliability and accuracy of the base maps,
they certainly contain errors due to differences in classification rules,
partial membership of more than one class per sampling unit, and un-
certainty associated with co-location of sample units. The reference
sample units were overlain on the different classification products to
extract the majority class for that unit.

We generated accuracy/error matrices for each land use classifica-
tion and land use change product. We report the error matrix in terms
of estimated area proportion. The cell entries of the error matrix are
estimated using equation:
o~ i
by = WI’TZI

@

where W; is the proportion of area mapped as class i, n; is the sample
count at the particular cell, and n; is the number of selected sample
units for class i. Overall accuracy, producer's accuracy, user's accuracy,
class area, as well as confidence intervals were estimated for each error
matrix. The 95% confidence level for each class (i.e. the five types of
land use change) is reported in order to quantify sampling variability of
the accuracy and area estimates. We also include qualitative spatial
overlay comparisons of the time-1 and land use change products to
examine differences in the spatial representations of land use patterns
between these products.

3. Results
3.1. Classification accuracy and spatial distributions of ¢.2010 land use

The estimated overall accuracy for the ¢.2010 land use classification
product from fine spatial resolution image data is 0.89 + with a 95%
confidence interval of 0.018. The producer's accuracies for residential
and non-built classes are 0.92 and 0.86 respectively. The non-re-
sidential class has the smallest producer's accuracy of 0.73 and the
smallest user's accuracy of 0.48. The residential and non-built classes'
user's accuracies are 0.89 and 0.96 respectively.

The area estimate with a 95% confidence interval of the residential
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class is 288.83 + 9.82km?> The residential class covers the largest
proportion of the study area and is mostly concentrated in the southern
part of the study area within the AMA. The non-built class covers
229.14 * 8.90km? and is located in the northern and western part of
the study area. Much of the area around the University of Ghana, Legon,
the Accra International airport and between the AMA and Tema con-
sists of non-built land use types. The area estimate of the non-re-
sidential built class with a 95% confidence interval is
27.06 + 4.97 km? Commercial structures are concentrated along
major freeways, especially the Accra-Tema motorway, the port in
Tema, the airport, and in downtown Accra. Institutions such as schools
are distributed fairly evenly throughout the study area.

3.2. Classification accuracy and spatial distributions of c.2000 land use

The estimated overall accuracy of the c.2000 fine spatial resolution
(FRes) map is 0.87 while that of the Landsat is 0.82. The producer's
accuracies of the residential and non-residential classes are larger for
the time-1 FRes map compared to the map estimated with the Landsat
back-dating approach. Their respective values are 0.91 and 0.64 in the
former, and 0.86 and 0.38 in the latter. The residential and non-re-
sidential classes user's accuracies however are comparable in the
Landsat-based map as compared to the FRes map; (0.86 vs. 0.83) for the
residential class and (0.35 vs. 0.33, respectively) for the non-residential
class. The non-built class user's and producer's accuracies are 0.96 and
0.86 respectively in the FRes map, and 0.85 and 0.85 in the Landsat
2002 map.

The area estimate with a 95% confidence interval of the residential
class is 197.16 * 9.64km? and 242.71 * 11.13km? of the study area
in 2000 for the FRes and Landsat map respectively. Undeveloped areas
cover 332,98 = 10.14km?> in the FRes map compared to
270.42 * 11.97km? in the Landsat map. The non-residential class
covers less areal extent with 14.89 = 4.30 km? and 31.90 = 7.00 km?
in the FRes and Landsat map respectively. However, differences exist in
the spatial distribution of the classes. The residential and non-re-
sidential classes visually appear to be more fragmented in the FRes
classification and more compact in the Landsat map. Moreover, the
FRes map presents more non-built areas within the city boundaries as
compared to the Landsat map. Some of these non-built areas are mis-
classifications of residential areas with a substantial amount of vege-
tation as non-built. Finally, spatial differences in the classification
products exist in some areas (i.e., the same area is classified residential
in one map and non-built in the other).

3.3. Classification accuracy and spatial distributions of 2000-2010 land
use change

The land use change maps generated by post-classification com-
parison of the FRes time-1 and time-2 FRes maps and the Landsat time-
1 and FRes time-2 maps are depicted in Figs. 3 and 4 respectively. The
accuracy assessment results of both maps are presented in Tables 3 and
4 respectively. The overall accuracy of the FRes to FRes change map
(change map 1) is 0.80 = 0.023, and is 0.81 = 0.021for the Landsat
to FRes change map (change map 2). Changes from non-built to re-
sidential and non-residential have larger producer's accuracies in
change map 1 compared to change map 2 at 0.53 > 0.42 and
0.39 > 0.24, respectively. The users' accuracies of the changed classes
are also greater in change map 1 in comparison to change map 2: 0.57
vs. 0.42 for non-built to residential and 0.48 vs. 0.25 for non-built to
non-residential.

About 19% (18.6%) of the study area changed between 2000 and
2010 according to Change map 1, corresponding to an area of
101.4km? (Table 5). The changes from non-built to residential re-
present 85.00% (86.16 = 11.63 km?) of total change area, with non-
built to non-residential constituting the remaining 15.00%
(15.23 + 4.54km?). Change map 2 depicts an overall change of
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Fig. 3. FRes to FRes Land use change map.

11.74%  (63.97km?  during the study period, 89%
(56.78 + 10.06 km?) of which represents changes from non-built to
residential and 11.00% (7.19 + 3.39km?) from non-built to non-re-
sidential. Most of the residential expansion occurred at the city's edges
in both maps. Change to non-residential areas occurred as infill within
the city's boundaries in places that were adjacent to extant non-re-
sidential land use.

4. Discussion

The backdating approach played an important role in improving the
overall classification results of the single date images. Change map 1
represented the greatest area of change (17%) in the Accra study area.
Therefore, the overall accuracies of the time-1 images are highly de-
pendent on the time-2 classification accuracy. The range of the overall
classification accuracies for the two single-date land use classifications
with fine spatial resolution, (i.e., time-2 FRes and time-1 FRes,) is only
0.02. The time-1 Landsat classification exhibits the smallest overall

C’ Non-Residential

[ | Residential
- Non-Built to Non Residential
I Non-Built to Residential

I Non-Built

Fig. 4. FRes to Landsat Land use change map.
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¢.2000 (FRes) to ¢.2010 (FRes) land use change identification accuracy assessment results.’
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Reference
Residential Non-residential Non-built Non-built to residential Non-built to non-residential Total (W) Area
Map Residential 0.3301 0.0010 0.0135 0.0479 0.0083 0.4009 36,701,326
Non-residential 0.0162 0.0171 0.0100 0.0048 0.0043 0.0523 4,786,353
Non-built 0.0000 0.0000 0.3623 0.0149 0.0000 0.3773 34,536,731
Non-built to residential 0.0176 0.0000 0.0411 0.0837 0.0044 0.1468 13,435,891
Non-built to non-residential 0.0005 0.0018 0.0027 0.0068 0.0109 0.0228 2,085,989
Total 0.3643 0.0200 0.4297 0.1581 0.0279 1.0000 91,546,291
! The cell entries are the products of the proportions and the stratum weights, as expressed in Eq. (2).
accuracy of 0.82. The difference in the overall accuracy of the two Table 5
change maps is also only 0.01. The residential built and non-built Land cover and land use change percentages.
classes were classified with large accuracies in the time-2 FRes dataset
. . No change Change
as well as in both of the time-1 datasets. On the other hand, the small
classification accuracy of the non-residential built class in time-2 pro- RB NRB NB NBto RB NB to NRB
pagated in both time-1 classifications, as a result both image sets
yielded smaller classification accuracies for this class. 2000 FRes to 2010 FRes 36.43%  2.00% 42.97% 1581%  2.79%
. s map
We integrated the OSM vector data as auxiliary data to the seg 2002 Landsat t0 2010 Fmap  43.41% 3.21% 41.63% 10.42%  1.32%

mentation of the time-2 images. The resulting segments represented the
land use of interests. Constraining time-1 segmentation with segments
from time-2 also created image-objects in time-1 that either followed
the time-2 segments boundaries or were contained within them.
Adopting such strategy reduces false changes due to misregistration
between images in time-1 and 2. The GEOBICA approach also allowed
us to implement our expert knowledge in combining the VIS and
building classifications to generate the final land use classification. The
ability to integrate one or more features in the classification phase
potentially improves accuracies. The non-built class was mapped ac-
curately across all image products, by combining the vegetation and/or
the soil classifications. The SobelRed feature was also useful to map the
non-built class in areas where these two land cover classes could not be
separated.

The relatively simple classification scheme was certainly instru-
mental in achieving large overall accuracies of the single date classifi-
cations. The fact that we classified only three land use types, (re-
sidential, non-residential, and non-built) based on very fine spatial
resolution imagery explains well why overall accuracies are above 80%.
We did not map sub-classes within these general land use types, partly
because of the desire to achieve sufficiently large map accuracies.

Several factors explain the resultant map accuracies of the in-
dividual land use classes. The residential class is apparently over-clas-
sified (more land area allotted to this class through image classification
compared to the area estimated by the reference data), as indicated by
the user's accuracies being smaller than the producer's accuracies.
Mixed land uses are very prevalent in Accra. It is not uncommon to have
both a residence and a business housed in the same building in many
parts of the city. Our mapping strategy was to err on the side of in-
clusion. We therefore assumed the residential class to be the default
land use for the entire city. Places that were not classified as either non-
built or non-residential were assigned to the residential class. Confusion

Table 4

RB = residential built; NRB = non-residential built; NB = non-built.

between the soil and impervious land cover classes led to the mis-
classification of several residential areas as non-built. The classification
accuracies of the non-residential built class were the smallest of the
three classes primarily because of the great variation in characteristics
that define the sub-classes of this land use. Large building sizes and
larger values of GLCM homogeneity were the primary features used to
map this class. Misclassification of buildings was a source of error for
the non-residential class. It was challenging to delineate single build-
ings and estimate their size in densely built parts of the city. Moreover,
areas with larger GLCM homogeneity values tended to be non-re-
sidential. However, small density residential areas at the city's outskirts
also tend to have larger GLCM homogeneity values, a cause of confu-
sion between this class and the non-residential class.

Differences in the spatial extent and location of land use between
the time-1 maps generated from the commercial satellite and Landsat
image data are depicted in Fig. 5. Map differences are mainly due to
differences in spatial resolutions of the dataset used in the study, and
mostly occur in areas of active urban expansion where residential de-
velopment occurred. Land use in these areas is classified as both re-
sidential and non-built in the FRes map, while they are completely
classified as residential in the Landsat-estimated map. Non-residential
areas tend to be composed of multiple land cover types. While large
land use polygons were classified as non-residential built in the Landsat
image, buildings were classified as non-residential built and the vege-
tation and soil as non-built in the FRes time-1 image. The moderate
spatial resolution of the Landsat image generalizes or integrates land
cover units within land use polygons. The result is that 5% more built
areas (residential and non-residential) were mapped in the Landsat map
than in the time-1 FRes map.

¢.2000 (Landsat/backdating) to ¢.2010 (FRes) land use change identification accuracy assessment results.

Reference
Residential Non-residential Non-built Non-built to residential Non-built to non-residential Total (Wi) Area

Map Residential 0.3812 0.0058 0.0127 0.0404 0.0046 0.4448 40,716,353
Non-residential 0.0230 0.0224 0.0121 0.0035 0.0023 0.0633 5,792,641
Non-built 0.0012 0.0000 0.3602 0.0149 0.0000 0.3763 34,450,873
Non-built to residential 0.0268 0.0000 0.0299 0.0432 0.0031 0.1029 9,424,335
Non-built to non-residential 0.0019 0.0039 0.0015 0.0022 0.0032 0.0127 1,162,090
Total 0.4341 0.0321 0.4163 0.1042 0.0132 1.0000 91,546,291
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\ Non-Residential
- Areas of Disagreement

Residential
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Fig. 5. Spatial overlay of the FRes and Landsat maps from ¢.2000.

5. Conclusions

Our study demonstrates the feasibility of performing relatively ac-
curate urban land use and land cover change analysis based on datasets
that have very different spatial resolutions. We evaluated a change
detection method that compared a fine spatial resolution satellite image
in time-2 to a Landsat image in time-1, due the lack of FRes satellite
image coverage for the ¢.2000 period for much of our study area. We
compared the land cover and land use change map from a backdating,
GEOBICA approach to one generated using the same approach but with
fine spatial resolution images for both time-1 and time-2. We found that
the adoption of a backdating approach improves the efficiency of the
analysis by focusing only on the change area, which typically represents
a small part of urban and peri-urban areas. We also found that the
proposed method produced a change map with an overall accuracy that
is relatively large, and slightly larger than that of the change map
produced with datasets of similar fine spatial resolution. However,
some of the user's and producer's accuracy obtained in the study were
small.

Future studies could refine and test procedures for more detailed
classification schemes, such as to map socio-economic status of re-
sidential areas, by taking advantage of finer spatial and radiometric
resolutions of satellites and aerial images that are becoming ubiquitous.
Finally, researchers performing land cover land use change analysis
without access to FRes data due either to lack of coverage or financial
resources could benefit from the findings of this research.
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