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ABSTRACT

The Caucasus is an important global diversity hotspot and hosts a wide variety of surface water features, including major transboundary wetlands, in addition to large
areas with irrigated agriculture and newly developed fishponds. In this study, we aim to establish the best performing methodology to produce surface water maps
with a high degree of accuracy in the Caucasus. We evaluate optical data from Landsat 8 in both the dry and wet season for three study areas in the Caucasus. We test
the performance of four different optical water indices derived from Landsat data, a method by Zou et al. (2017) also applied to Landsat data, and the European
Commission Joint Research Centre (ECJRC) Global Surface Water dataset. We evaluate the performance of each water index using 5744 land cover validation/
training points over all three study areas, which we manually classified by evaluating imagery from Google Earth. Using all validation points from all three study
areas and both the wet and dry season, we find that the application of a logistic regression model using an optical surface water index (MNDWI) resulted in the most
accurate open surface water maps. This approach achieved an overall accuracy of 93.0%, which is better than was found for freely available global surface water

products.

1. Introduction

The importance of water, as it relates to living organisms on this
planet, cannot be overstated. Water is the essential chemical compound
that allows for the creation, existence, and propagation of the species
that claim their residence on Earth. This fact especially holds true for
the coexistence of human populations in rural and urban developments
and the natural environment for the mosquito and transmission of the
vector-borne disease of malaria. In 2017, the World Health
Organization (WHO) reported 219 million malaria cases and 435,000
malaria-related deaths worldwide(Di Rocco et al., 1997). From the
1800s to around the first 25 years of the twentieth century, malaria was
prevalent in Russia and the Soviet Union. It was especially dominant in
the Caucasus region of Georgia, Armenia, and Azerbaijan (Bruce-
Chwatt, 1959). In 1934, there were almost 600,000 reported incidences
of malaria in Azerbaijan (Global Health Group, 2015). After the com-
pletion of the Global Malaria Eradication Campaign, there were no
reported cases of malaria by 1960 (Mammadov et al., 2016). However,
after the collapse of the Soviet Union, the number of reported malaria in
cases rose again to 667 cases (in 1994) and jumped to 13,135 cases by
1996 (Di Rocco et al., 1997). After the outbreak of malaria was ob-
served, control and prevention measures were subsequently im-
plemented on a large scale between 1997 and 2011 (Di Rocco et al.,
1997).

Malaria is a vector-borne disease that is caused by Plasmodium and
distributed by Anopheles mosquito (Okorie et al., 2014). The Anopheles
mosquitoes are reliant and limited to breeding habitats that contain
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standing water. Evaluating precipitation patterns, a relationship can be
made between rainfall and mosquito abundance. For example, a nu-
merical simulation has shown that 39% of simulated variances in the
abundance of mosquito populations can be attributed to the pattern of
intraseasonal rainfall (Bomblies, 2012).

Remotely sensed data are often used to identify surface water in a
landscape (Cheng et al., 2006; Lacaux et al., 2007; Mueller et al., 2016;
Tulbure et al., 2016; Work & Gilmer, 1976). To observe and measure
the variability of the surface water, a water index and threshold can be
established for the detection of water bodies and the calculation of the
total surface area. Over the last 25 years, numerous remotely sensed
indices have been developed for the detection of open surface water
(Feyisa et al., 2014; Lacaux et al., 2007; McFeeters, 1996; Xu, 2006).
These surface water indices typically use band math to emphasize the
spectral reflectance characteristics of water features, while suppressing
the characteristics of non-water features. Using a water index to de-
lineate water features from other types of land cover typically requires
the use of a cutoff or threshold value to establish the requirements a
specific pixel needs to meet to be classified as water. Unfortunately, the
performance of these water indices can vary spatially (Ji et al., 2009;
Jiang et al., 2014; Kelly & Gontz, 2018). Different water indexes use
different band combinations that can provide varying results, depen-
dent on the distribution, type, consistency of surrounding land cover,
and mixed pixel composition. Mixed pixels result from the presence of
two or more land-cover classes contained in a smaller surface area as
compared to the native resolution of the image. Ji (2009) found it ne-
cessary to evaluate different water detection indexes to determine the
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method that performs best for the study region, as well as, the im-
portance and need to ascertain an appropriate threshold for that region
to segregate waterbody features from other land-cover types effectively.
Nevertheless, in recent years, several global water datasets have been
developed (Pekel et al., 2016).

The Caucasus is an important global diversity hotspot and hosts a
wide variety of surface water features, including major transboundary
wetlands, in addition to large areas with irrigated agriculture and newly
developed fishponds. In this study, we aim to evaluate different spectral
indices that delineate bodies of water from other topographical features
in the Caucasus, to establish the most effective and accurate method for
obtaining surface water area. Thus, different from other studies, we aim
to capture predominantly human-made water bodies such as irrigation
channels, making it especially important to distinguish these features
from impervious surfaces. Besides evaluating different spectral indices,
we will also compare our results with water maps from a globally
available water dataset.

2. Study region

Georgia (69,700 km?), Azerbaijan (86,600 km?), and Armenia
(29,743 km?) make up the southern Caucasus (Transcaucasia), an
agrarian, mountainous, region flanked by the Caspian and the Black
Sea, with Russia to the north and Iran and Turkey to the south (Fig. 1).
The region was part of the Soviet Union until its fall in 1991. The
Greater Caucasus Mountain Range and the Lesser Caucasus Mountain
Range create substantial elevation differences in all three countries,
resulting in highly variable climates, ranging from cold alpine to humid
subtropical.

Agriculture is an essential component of the economy in the
Caucasus. For example, in Armenia where 62% of the land is allocated
to agricultural production (80% of the crops irrigated), agriculture
accounted for 19% of Armenia’s gross domestic product (GDP) and
employed 39% of the labor force (United States Agency International
Development, 2017a). In Azerbaijan, 80% of agricultural production
comes from irrigated lands, and agriculture employed 39.7% of the
country’s labor force in 2010 (World Bank Group, 2012c). In Georgia,
the agricultural sector employs 52.3% of the country’s labor force,
which has remained relatively unchanged over time.

After the collapse of the Soviet Union, the agricultural regions in all
three countries changed rapidly. For example, in Georgia, he croplands
were re-distributed to rural families after 1992, andabout 80 to 90% of
the newly created farms were less than 0.01 km? in size. After this re-
distribution about 23% was owned by private farmers, 10% leased to
farmers, with the outstanding 67% held by the state. This process
fragmented the agricultural sector leaving the irrigation infrastructure
to these farms inefficient or insufficient in areas (World Bank Group,
2012a). In Armenia, the Agrarian reform and land privatization also
fragmented large agricultural farms into 338,000 smaller farms. Here
the area of irrigated lands was halved, also making irrigation and
drainage systems unreliable (World Bank Group, 2012a). Poor man-
agement in an aging infrastructure led to the majority of the irrigation
systems being in poor condition in Azerbaijan (World Bank Group,
2012c). The deterioration of the irrigation and drainage infrastructure
in all three countries has led to soil pollution from pesticides and fer-
tilizer, contributing to an increase in soil salinity in the region (World
Bank Group, 2012c).

3. Data
3.1. Google Earth Training and Validation

We manually identified 1000 validation and training (30 m by 30
m) grid cells (600 land/400 water) for each of the three study areas

using Google Earth images. Since we are explicitly interested in the
detection of water, but water is a relatively rare class, we have
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developed a two-track validation approach. We first select 600 random
points on the landscape. In the second step, we randomly select 400
points over areas identified as water according to the European Water
Extent product, discussed below. For each of these stratified random
samples, we visually evaluated the type of land cover, as well as the
percentage of the land cover type that each point contained based on
Google Earth imagery (5744 total points). We then randomly divided
the classification points into 200 validation and 800 training points.
The training points were used to develop the classification of open
surface water, and the validation points to assess the accuracy of the
water detection product. The majority of the Google Earth imagery was
recorded after 2018; however, some imagery ranged back as far as
2008.

3.2. Landsat

We selected six level 2 Landsat 8 (OLI) satellite images from
Earthexplorer (earthexplorer.usgs.gov) of the United States Geological
Survey (USGS), at a spatial resolution of 30 m. These level 2 images are
already atmospherically corrected, and we selected images that con-
tained less than 30% cloud cover per scene. Three Landsat 8 path/rows,
one for each country were used for this project (Table 1). For each
country, we selected one image during July and one image during
October, which coincides with a dry and wet period. We mask each
image based on the provided cloud mask.

Based on extensive literature review, we selected the following
water indices for evaluation (Table 2): the Normalized Difference Water
Index (NDWI; McFeeters 1996), the modified Normalized Difference
Water Index (MNDWI; Xu 2006), the Automated Water Extraction
Index; the shadow and non-shadow (AWEIsh and AWEInsh; Feyisa et al.
2014), and a water classification algorithm based on both MNDWI and
EVI/NDVI (Zou et al., 2017). The NDWI uses the reflected visible green
(0.52-0.60 um) and the near-infrared (NIR, 0.7-1.4 um) wavelengths to
enhance the spectral characteristics of surface water. Mcfeeters (1996)
formulated the NDWI using the Band Ratio Parameter (BRP), defined as
subtracting the NIR band from the green band and dividing the dif-
ference by the sum of the two bands. This combination of the NIR and
green wavelengths gives positive values to water features and zero or
negative values for vegetation and soil when applied to a multispectral
satellite image (McFeeters, 1996).

Xu (2006) found that NDWI enhanced water features in multi-
spectral satellite images but could not effectively suppress built-up land
features present in the scene. To address this issue, Xu (2006) in-
troduced the modified NDWI (MNDWI). An examination of the spectral
reflectance patterns for built-up land, vegetation, and lake water ex-
hibited a higher average reflectance in the shortwave infrared
(SWIR,1.55-1.75 pm) band range when compared to the green band.
The MNDWI uses the same form as the NDWI but instead uses the SWIR
band in place of the NIR band to increase the enhancement of open
water features. Despite being resilient to built-up land features, the
MNDWTI has difficulties in distinguishing low albedo urban surfaces and
shadows from water (Feyisa et al., 2014). To further suppress the
misclassification of water from shadowed and other non-water surfaces,
the automated water extraction index (AWEI) was introduced. As a
result, two different equations are presented to improve the accuracy of
water extraction, while suppressing non-water pixels: AWEIsh and
AWEInsh. The AWEInsh index was created to reduce the confusion
between water and non-water pixels, as well as dark surfaces included
in urban background areas. The subscript “nsh”, or non-shadow, iden-
tifies the index is best suited for areas where shadows are not present or
pose no problems for classification (Table 2).

In some cases, the AWEInsh equation may not effectively eliminate
all shadow types and surfaces of low albedo. Surfaces that contain
shadows exhibit low reflectance patterns over the spectral range and
also vary in the magnitude of this low reflectance as the surface char-
acteristic changes. With these limitations in mind, the second equation,
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Fig. 1. (A) Overview image of the Caucasus study region, (B) the Azerbaijan Landsat 8 tile 168/032 (6,5,7 RGB), (C) the Georgia Landsat 8 tile 170/031 (6,5,7 RGB),

(D) and the Armenia Landsat 8 tile 168/033 (6,5,7 RGB).

Table 1
Summary of path/row and acquisition date of Landsat 8 OLI images from the
three study areas located in Armenia, Azerbaijan, and Georgia.

Georgia Armenia Azerbaijan
Landsat 8 Path/Row 170/031 168/033 168/032
Landsat 8 - Date 1 07/03/2017 07/28/2017 07/21/2017
Landsat 8 - Date 2 10/07/2017 10/25/2017 10/25/2017

“AWEIsh” was formulated to increase the separability of water from
shadows and other dark surfaces. The subscript “sh”, or shadow, in-
dicates that the index is designed to improve the accuracy of water
feature extraction in scenarios where significant sources of shadow
(urban/mountain) are present (Table 2). The AWEIsh may misclassify
surfaces as water in areas that contain highly reflective surfaces, in-
cluding snow, ice, and urban locations with reflective roofs (Feyisa
et al., 2014). Zou et al. (2017) use a combination of the MNDWI and
vegetation indices, the Enhanced Vegetation Index (EVI) and the Nor-
malized Difference Vegetation Index (NDVI), to reduce the potential
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Table 2
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Explanation of band combinations based on Landsat 8 OLI data, and potential threshold values from previous studies used to extract water pixels from images

Water Index Equation

Potential
Threshold
Values

NDWI (Green — NIR) 0 - 0.337% 0.015 - 0.017°
McFeeters (1996) (Green + NIR) -0.19 - 0°
0.3877°¢
-0.21f
MNDWI (Green — SWIR1) 0 - 0.09% -0.05 - 0.06° 0.005 — 0.6¢
Xu (2006) (Green + SWIR1) 0.35¢
0.00°
AWEIsh Blue + 2.5 X Green — 1.5 x (NIR + SWIRL) — 0.25 x SWIR2 —0.15 - 0.045% -0.1 - (-0.03)°
Feyisa et al. (2014) 0.1112¢
-0.02f
AWEInsh 4 % (Green — SWIR1) — (0.25 X NIR + 2.75 x SWIR1) —0.15 - 0.045¢
Feyisa et al. (2014) -0.1 - (-0.02)¢
0.1897¢
-0.07°
Water [(MNDWI > NDVI or MNDWI > EVI) and (EVI > 0.1)] n/a

Classification Algorithm
Zou et al. (2017)

a: (Xu, 2006); b: (Ji et al., 2009); ¢: (Jiang et al., 2014); d: (Feyisa et al., 2014); e: (Acharya et al., 2018); f: (Fisher et al., 2016)

commission error of vegetation over wet surfaces. This algorithm re-
quires the MNDWI value of the pixel to be higher than the value of
NDVI or EVI and contains an EVI value of less than 0.1 to be classified
as water (Table 2).

3.3. European Water Maximum Extent Dataset

We also evaluate the Global Surface Water Explorer (https://global-
surface-water.appspot.com/) developed by the European Commission’s
Joint Research Centre (ECJRC) as it is a freely available global dataset.
This water dataset was derived from the entire inventory of the Landsat
5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic Mapper-
plus (ETM +), and Landsat 8 Operational Land Imager (OLI) brightness
temperature and top-of-atmosphere reflectance, orthorectified images,
that were obtained from March 16, 1984, to October 10, 2015 (Pekel
et al., 2016). The Global Surface Water dataset contains several dif-
ferent water metrics. For this study, we selected the maximum water
extent product, which renders information on all regions that have ever
detected water over the course of the 32-year period and the water
monthly history product, which aggregates this data on a monthly
scale. The dataset was created by applying an expert system classifier
that segregates the pixel to one of three target classes, water, land, and
non-valid. This system establishes the parameters to classify bodies of
water by using a decision tree based on rules containing a dichotomous
conditional and inference framework. The equations describing the
conditional parameters are built upon a spectral library, established
from visually evaluated samples of 64,254 points over 9,149 Landsat
scenes, and enhanced by deriving the NDVI and a standard color-space
transformation of the Hue-Saturation-Value (HSV) for the SWIR2 (2.08
— 2.35 um), NIR, Red and NIR/Green/Blue band combinations. Evalu-
ating the order of reasoning applied by the inference engine gives in-
sight into the factors that lead to pixel classification. This allows for the
identification, correction, and improvement of the shortcomings in-
herent in the developed evidential reasoning through an iterative pro-
cess. This process is repeated until the system can be improved no
further, and subsequently applied to the entire Landsat dataset.

3.4. Shuttle Radar Topography Mission

The Shuttle Radar Topography Mission (SRTM) is a high-resolution
digital elevation model (DEM) available for 80% of the Earth’s land
surface. This data was acquired from a collaborative effort by NASA, the
German and Italian Space Agencies, and the National Geospatial-

Intelligence Agency (NGA) over a ten-day operational flight period of
149 orbits in February of 2000 (Farr et al., 2007). The SRTM utilized C
band (5.6 cm) and X band (3.1 cm) synthetic aperture radar systems,
designed to function as a single-pass interferometers. With a 1 arc sec
by 1 arc sec sampling resolution, the SRTM Data were to be sampled
with a linear vertical absolute/relative height error of fewer than 16 m/
10 m and a circular absolute/relative geolocation error of less than 20
m/15 m (Farr et al., 2007). We use the DEM dataset to create a slope
raster for the elimination of confusion between water pixels and pixels
containing mountain shadows.

3.5. Global Man-made Impervious Surface Dataset

The Global Man-made Impervious Surface (GMIS) data set is created
from the freely available satellite imagery from the 2010 Global Land
Survey (GLS) (Brown de Colstoun et al., 2017). To mitigate the spectral
confusion of urban areas with bare surfaces and fallow lands, a non-
urban mask is created from nightlight data and other sources of ancil-
lary data (Homer et al., 2004). To produce training data to train the
cubist regression tree algorithm, 1,800 high-resolution scenes were
obtained from the NGA WARP (Web-based Access and Retrieval Portal)
website to form relationships between the spectral values of Landsat
data and subpixel imperviousness (Brown de Colstoun et al., 2017).
This dataset is provided in GeoTiff raster files containing two bands:
percent imperviousness and standard error in percent imperviousness.
This data set is used to create an impervious surface raster mask to
eliminate urban pixels that may be misclassified as water.

4. Methods

The goal of this study is to evaluate the European Monthly History
Water dataset, as well as a variety of water indices developed in the
literature to establish which index performs best for the Caucasus re-
gion. Also, we present an alternative method for the detection of surface
water in this region. We validate all datasets against validation points
selected based on Google Earth images. A mask is applied to omit noise
originating from cloud and snow pixels from the logistic modeling
process. The snow/cloud mask is then applied along with the urban/
shadow mask to remove the misclassification of these phenomena from
the final surface area calculation. Fig. 2 provides an overview of the
applied methodology.
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Fig. 2. This figure displays the workflow process for the extraction of surface water body area from water index probability maps. For consistency and continuity, the
Cloud/Snow/Urban/Shadow mask was applied when comparing the surface water area of Zou et al. 2017 and the probability maps for the wet/dry seasons.

4.1. Logistic Regression

We apply a logistic regression model to link the Google Earth
identified water points with the satellite-derived water indices. Logistic
regression models have been widely used to provide a probabilistic
classification of land cover type based on values of a given set of pre-
dictors derived from remotely sensed data (Alsharif & Pradhan, 2014;
Cheng et al., 2006; Lee, 2005; Mueller et al., 2016). Others stated that
the logistic regression performs well for testing hypotheses and de-
scribing the relationship between predictor variables and a categorical
outcome variable (Peng et al., 2002). The variables used in logistic
regression may be discrete, continuous, or a combination of both
classes, and a normal distribution of the data is not required (Lee,
2005). The probability equation for the logistic regression(1) is de-
scribed as follows:

1

L) o))

Where b represents the slope value of the index, x represents the index
point value, which in our case is the derived water index, a represents
the y-intercept value, and p represents the resulting probability value,
which provides the probability that an individual pixel contains water.

4.2. Optimal Probability Cut-Off

To derive a binary water surface map from a spectral water index, a
threshold (or cut off value) is required. The selection of a threshold is
critical to the performance of a selected index’s ability to identify the
land cover feature of interest. A threshold set to a large value has the
propensity of creating a product that has an increased omission error
and resulting in the identification of a smaller magnitude of the number
of water bodies detected. A threshold set to a small value will result in a
larger number of water bodies identified in the scene but also is more
likely to misidentify land features as water. As Table 2 demonstrates,
selecting the threshold value to distinguish between water and other
land surfaces is not straightforward, and a constant value cannot be

used for all scenes due to the variations of the temporal and subpixel
land-cover components in the scenes. This changing of physical and
temporal characteristics between scenes makes the threshold value
dynamic in nature, making it necessary to evaluate and establish the
threshold that is appropriate for the region of study (Ji et al., 2009).
There have been several methods used to determine a threshold that
provides a cut-off parameter to minimize the commission and omission
errors inherent in segregating land cover into classes. Jiang et al. (2014)
applied a series of water index thresholds values from -0.1 to 0.1 in
increments of 0.01, evaluated via visual inspection and pixel by pixel
assessment of the image, along with using high-resolution images from
Google Earth™ as a complementary reference in order to assist in
distinguishing confusing water pixels from mountain shadows or urban
areas.

In the modification of the normalized difference water index, a
series of thresholds tested manually were adjusted and evaluated by
confusion matrices produced with a pixel-by-pixel comparison between
the predicted and reference images (Xu, 2006). Others also used a “trial
and error” method, stepping through a series of thresholds with 0.05
increments between -1 and 1, to find the highest overall accuracy and
kappa (Acharya et al., 2018).

The AWEI water extraction index considered multiple thresholds by
calculating commission and omission errors and plotting the percentage
errors against threshold values (Feyisa et al., 2014). The commission
and omission errors were established by comparing the reference data
by manual digitizing multiple polygons evenly distributed on true-color
composites of Landsat bands to the threshold values selected. The in-
tersection point of the commission and omission errors was regarded as
the optimal threshold value for the index in the study area (Feyisa et al.,
2014). From the water delineation indices previously described, the
method for determining the most accurate threshold for these water
detection studies involves a manual pixel-by-pixel or use of manually
digitized polygons to evaluate and assess the performance (or overall
accuracy) of the selected water index. This process works well for
studies that involve evaluating a hand full of images from different
areas. Unfortunately, this method proves inefficient when applying
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such a technique of thresholding to large-scale regions of study across
time series on a decadal scale, due to the temporal and physical var-
iations between the areas.

To compensate for the variability of thresholds between scenes, we
propose that the threshold selection process should represent the dy-
namism of variability inherent in each scene. This can be achieved by
allowing for the temporal and physical characteristics present in each
scene to determine its own threshold value. In general, there are two
statistical approaches used to approach the issue of identifying and
applying an optimal threshold, the use of the Receiver Operator
Characteristic (ROC), and the application of an appropriately selected
statistical test (Lopez-Raton et al., 2014). In this study, we will be fo-
cusing on the former. The optimal probability cut-off (OPC) is an
iterative process that applies all possible probability cut-off values to
the actual and predicted values of the selected index to determine the
cutoff value that produces the highest degree of accuracy for classifying
water that best fits the regression model established by the validation
points. From the resulting OPC value, a comparison of accuracy can be
made between the different water indices

4.3. Cloud, Urban areas, and Mountain Shadow Removal

The loss of data due to cloud cover is a natural and unavoidable
phenomenon woven into the nature of optical satellite remote sensing.
To ameliorate this issue, we remove the clouds present in the scene by
applying a cloud mask derived from the pixel QA raster included with
the Landsat image. While this method eliminates the data obscured by
clouds, the benefit is that the non-selective scattering characteristic of
the cloud is not misclassified as water.

Each of the water detection methods applied in this region struggled
with the misclassification of water pixels due to the presence of built-
up, mountain shadow, and snow cover in the scene. To assist in the
removal of mountain shadows in the image, the SRTM digital elevation
model was used to create a slope value raster of the region. To effec-
tively remove unwanted mountain shadow from the scene, areas with a
slope of more than ten percent were masked out. The distribution and
composition of urban land cover vary between locations. For this
reason, the Global Man-made Impervious Surface (GMIS) dataset is
used. Pixels with more than ten percent impervious surface, according
to the GMIS dataset, were masked out.

4.4. Evaluation of Index Performance

To compare the performance of the different water indices, we
calculated accuracy measures for each season (wet/dry) and each re-
search area using the Google Earth validation points. The ROC, sensi-
tivity, specificity, concordance, and overall accuracy for all water de-
tection methods and areas are evaluated and compared to determine
the best performing index for the region. The ROC curve is a visual
representation of classifier performance, derived from plotting the false
positive rate (FPR) against the true positive rate (TPR). This curve es-
tablishes the boundaries of a test’s capability to differentiate between
two different states (Zweig & Campbell, 1993). Others disclosed the
advantage of using a ROC curve to measure the performance (accuracy)
of the different water detection methods (Swets, 1988). To assess the
discriminative ability for a model of logistic regression, a concordance
statistic is also calculated. The concordance statistic is a unit-less index
that indicates the likelihood that a pixel selected at random that has
water present will have a higher value of predicted probability, as op-
posed to a randomly selected pixel that does not contain water (Harrell,
2015). This value is derived from the proportion of the pairs of pixels
that contain water and their predicted probability, with the pairs of
pixels and probability values that do not contain water (Austin &
Steyerberg, 2012). A concordance result with the value of one re-
presents the quality and reliability of a perfect classification model. The
TPR (also known as sensitivity) is a ratio that is calculated by dividing
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the number of true positives (TP the number of correctly classified
positive) by the sum of the true positives and false negatives (the
number of incorrectly classified positive states). Sensitivity is the
measure of the accuracy of an index for water detection. The value
range of sensitivity is between 0 and 1. The closer the value is to one,
the higher the magnitude of confidence in the actual existence of water
in that pixel (Fawcett, 2006). Specificity is a ratio calculated by di-
viding the number of the true negatives (the number of correctly clas-
sified negative states) by the sum of the true negatives and false posi-
tives (the number of incorrectly classified negative states). The values
range from O to 1, and the closer the value is to 1, the higher the
confidence in the actual non-existence of water in that pixel (Fawcett,
2006). The overall accuracy of the individual models tested is calcu-
lated by summing the number of true positive and true negative clas-
sification points and dividing by the total sum of all classification
points. The result is then multiplied by 100, and the value obtained is
the overall percent accuracy of water classification for the specific de-
tection method. To determine the highest performing water index, each
method was evaluated individually for their performance in each ca-
tegory. We assigned a value of one to the highest performing index and
a value of zero to all other indices. The index with the highest summed
value across all metrics will be determined as the best performing water
detection model for use in the Caucasus region.

5. Results

We have evaluated four different optical water indices (NDWI,
MNDWI, AWEIsh, AWEInsh, and the method described in Zou et al.
(2017) to identify water in the three different countries that make up
the southern Caucasus region. We also have evaluated the performance
of these indices on a seasonal scale (July vs. October) and by combining
all results within one year. Table 3 displays the results from the logistic
regression, consisting of slope, intercept, and optimum probability cut-
off for the ECJRC Monthly History Water dataset, water data based on
the method by Zou et al. 2017, and each of the water detection indices.
Below we will first provide the overall accuracy by country and month
for each of the water indices. We then present results on the overall
estimated water surface based on the European Monthly History Water
dataset from the ECJRC. We will also describe some general errors
when detecting water with optical indices.

5.1. Water index accuracy by seasons and country

Based on the Google Earth selected random validation points, we
determined the overall accuracy for each water index by season and
country (Table 4). Apart from the method described by Zou et al.
(2017), we found that the overall accuracy was relatively high for all
countries and all indices. Generally, the indices appeared to perform
best for Azerbaijan, with overall accuracy above 95% for all indices,

Table 3

Results of Logistic Regression and the Optimal Probabiliy Cut-off values (OPC).
An OPC of 0.227 (NDWI), indicates that a water present/absent map is most
accurate if any pixel with a probability of more than 0.227 is set to water. Note
that the probability cut-off for the European Monthly History Water dataset is
close to 0, since any probability that water is detected should be selected as
water present.

Slope Intercept Optimal Probability cut-off

(OPC)

European Monthly 4.911 —3.014 0.049
History

NDWI 6.975 —0.095 0.227
MNDWI 5.864 —0.765 0.182
AWEIsh 9.708e-04  6.642e-01  0.527
AWEInsh 4.938e-04  1.091 0.419
Zou et al. 2017 3.357 —1.568 0.177
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Table 4
Overall accuracy for each water index by season and country.
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Annual Georgia  Armenia  Azerbaijan  All Countries
European Monthly History  89.4% 90.7% 96.1% 92.2%
July 88.6% 88.9% 96.4%

October 90.5% 92.6% 95.9%

MNDWI - Annual 90.9% 93.0% 95.7% 93.0%
July 91.8% 92.4% 96.4%

October 90.6% 94.8% 94.9%

AWEIsh - Annual 90.6% 93.6% 96.3% 93.3%
July 91.8% 92.4% 96.4%

October 90.0% 94.8% 96.1%

AWEInsh - Annual 90.1% 93.6% 96.5% 93.1%
July 91.3% 92.4% 96.4%

October 88.9% 95.4% 96.6%

NDWI - Annual 90.9% 92.4% 94.4% 92.3%
July 91.8% 91.3% 94.4%

October 90.0% 93.6% 94.9%

Zou et al. 2017 79.9% 78.8% 63.0% 78.0%
July 82.5% 77.8% 63.0%

October 77.2% 80.0% 63.5%

and worst for Georgia, with all indices revealing an overall annual ac-
curacy of slightly greater than 90%. The method described by Zou et al.
(2017) exhibited the weakest performance out of all tested indices
(overall accuracy 78%). This method performed the best in Georgia
(accuracy 79%) and the worst in Azerbaijan (accuracy 63%) expressing
an inverse trend of accuracy compared to the other tested indices in
individual countries.

Using the OPC value, we calculated accuracy percentages for each
index. To better understand the under and overestimations that make
up the overall accuracy, we have calculated these percentages for each
index (Table 5). The ECJRC Monthly History Water dataset reveals an
underestimation of water pixels, underestimating 15.7% of the water
validation points. All the evaluated indices tended to overestimate
water pixels, with MNDWI having the most significant percentage of
overestimation at 11.6% and AWEIsh the lowest percentage at 9.0%.
The water detection method described in Zou et al. 2017 had the
highest percentage of underestimated water pixels at 23.2%, while
AWEInsh recorded the lowest percentage of underestimated water
pixels at 5.1%, based on the collected Google Earth validation data.

The difference in overall accuracy between the four methods and
the ECJRC Monthly History product was less than 1% (MNDWI,
AWEIsh, AWEInsh, and NDWI). Thus we evaluated other performance
metrics of sensitivity/specificity, concordance, and ROC area (Table 6).
Evaluating each method by study area on an annual scale and using the
other performance metrics (Table 6), we determine that the MNDWI
performed the best in Georgia, Armenia, and Azerbaijan. We found that
the sensitivity, ROC area, and concordance were highest for the MNDWI
index.

5.2. Water surface area

To understand the total surface area estimates, we calculated the
total water surface for each index and each country and season

Table 5
Percentages of over and underestimation of validation water pixels.

All Areas Annual Overall Under Estimated  Over Estimated
accuracy
European 2017 Water 92.2% 15.7% 4.27%
Map

MNDWI 93.0% 5.2% 11.6%

AWEIsh 93.3% 5.7% 9.0%

AWEInsh 93.1% 5.1% 10.7%

NDWI 92.3% 6.6% 10.3%

Zou et al. 2017 78.2% 23.2% 10.9%

Table 6
Other performance metrics to evaluate water index performance.
All Areas Annual  Overall Sensitivity ~ Specificity ~Concordance ROC Area
Accuracy
European 92.2% 0.843 0.957 0.807 0.900
Monthly
Water
History
NDWI 92.3% 0.850 0.956 0.949 0.949
MNDWI 93.0% 0.885 0.950 0.957 0.957
AWEIsh 93.3% 0.870 0.962 0.953 0.952
AWEInsh 93.1% 0.885 0.952 0.938 0.935
Zou et al. 2017 78.2% 0.850 0.956 0.327 0.658

(Table 7). The estimation of surface water area between the four water
index probability maps was reasonably consistent when compared to
each other. With few exceptions, the MNDWI (OPC) map generated the
largest surface area values when applied to all tiles for both periods. In
contrast, the AWEIsh (OPC) map produced the lowest surface water
area over the study region tiles. The NDWI probability water map,
however, greatly overestimated the area of surface water in the Ar-
menia tile in both wet/dry periods. The overestimation resulted from
the NDWI index having difficulty in differentiating between snow and
water pixels in the Armenia tile.

When comparing the OPC surface water estimation to the ECJRC
Monthly History water map, we observe an underestimation of surface
water pixels detected. Across all study regions and periods, the ECJRC
water map identified less water than the probability index maps. This
underestimation of the surface water area is consistent with the per-
centage of underestimated validation points, as described in Table 5.

The method described by Zou et al. 2017 underestimated the area of
surface water bodies in all tiles in both wet/dry periods as compared to
the other selected water detection methods. This result is also consistent
with the method’s tendency to underestimate the percentage of total
water pixels in the study area (Table 5).

Evaluating the OPC method, we find that there are strengths and
weaknesses between the performance of the different water probability
maps. Fig. 3 displays the different water detection capabilities between
the indices and the ECJRC Monthly History water map. The ECJRC
Monthly History water map detects the least amount of surface water in
this scene, while all water probability maps using an OPC prove more
successful in identifying the water present in the canal. The MNDWI
water probability map generates a more complete representation of the
surface water area as compared to the other water index probability
maps.

Urban areas and mountain shadows pose a threat to the accuracy of
water index detection methods, as these areas can have positive water
index values causing a misclassification of the water features presents in
the scene. Figs. 4 and 5 highlight the misclassification in areas that
contain urban and mountain shadow land features. In Fig. 4, we see that
the best performing probability index, as it relates to urban mis-
classification, is the AWEInsh water map. The other index water
probability maps had varying levels of success with the misclassifica-
tion of urban areas, with the NDWI water probability performing the
poorest and the AWEInsh water probability performing the best out of
the set. However, the success of the AWEInsh probability water map
does not carry over to areas containing mountain shadows. Fig. 5 dis-
plays the performance of the water index probability maps when ap-
plied to a region Northwest of Tbilisi, Georgia. In this location, the
NDWI probability index performed the best, while the AWEInsh per-
formed the worst as it relates to mountain shadow classification.

Evaluating Figs. 3-5, we observe variation in the performance of the
water index probability maps depending on the landcover type present
in the scene. To reduce the misclassification of built-up urban areas, an
urban area mask is utilized. Fig. 6 shows the water index probability
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Table 7

Int J Appl Earth Obs Geoinformation 91 (2020) 102159

Surface water area using OPC value and the ECJRC Monthly History water map, from each of the two periods (wet/dry) over three study areas. A Pixel QA raster
snow/cloud mask was applied to all Landsat tiles to remove pixels containing clouds from the final area calculation.

Georgia (km?) Armenia (km?) Azerbaijan (km?)

European Water dataset Monthly Water History 210.1 / 212.5 65.0 / 51.5 644.0 / 610.0
Landsat 8 NDWI 233.2 / 238.7 143.4 / 186.3 742.0 / 644.4
Landsat 8 MNDWI 251.9 / 233.5 82.9/62.4 744.7 / 623.5
Landsat 8 AWEIsh 222.4 / 217.2 66.0 / 50.9 663.9 / 570.2
Landsat 8 AWEInsh 237.0 / 256.7 72.3 / 58.0 735.0 / 619.0
Landsat 8 Zou et al. 2017 44.3 /99.3 37.9/285 552.7 / 456.4

maps before and after the urban areas mask was applied.

Many studies have used water indices with other methods to reduce
the misclassification of shallow water bodies (Jiang et al., 2014;
Tulbure et al., 2016; Zou et al., 2017). This study focuses on the unique
characteristics of water that are lost by the derivation of a generic water
index. To establish a more meaningful relationship between surface
water in the region, and the water index values that are generated, the
specific spectral and environmental characteristics of the water must be
considered. Differences in atmospheric conditions, the variation of the
incident angle of the sun, and changes in the chemical and biophysical
properties of the water can influence the pattern of reflected wave-
lengths exhibited by surface water bodies (Zhang et al., 2010). Applying
a logistic regression to the water index incorporates the specific spectral
properties of water in that region into a range of probabilistic values
that are as unique as the environmental conditions in which they exist;
resulting in more separation between the values of vegetated and water
land cover types (Fig. 7).

Looking at the spectral reflectance tendencies of water, MNDWI
values of water are generally greater than zero (Xu, 2006). The equa-
tions for the AWEI products use coefficients in order to force water pixel
values to be positive and negative values pixels for non-water pixels,
allowing for an initial threshold value of zero for varying environmental
conditions (Feyisa et al., 2014). To compare the effectiveness of the
water probability maps with OPC value to the selected water indexes, a
default threshold of zero was chosen in Fig. 8 for the extraction of
surface water. Despite having a value of zero for the threshold, the
MNDWI, NDWI, AWEIsh, and AWEInsh had difficulties extracting the
water pixels in the scene. Comparing the results of the water probability
map and the water index maps, the OPC value water map exhibits a
more complete representation of the water canal’s location and surface
water area, than the traditional thresholding of the raw water index
values. The inability of these indices to effectively detect the water in
this canal by using a default threshold of zero is due to the water in this
canal having negative index values.

To accurately extract the water present in the canal, an adjustment
of the water threshold value is required. After applying the lowest po-
tential threshold implemented in the previously discussed studies for
the selected water index (Table 2), the water indices present difficulties
in detecting the water present in the canal (Figure 9). Comparing the
results of the water probability map and the water index maps, the OPC
value water map exhibits a more complete representation of the water
canal’s location and surface water area, than the traditional thresh-
olding of the raw water index values.

6. Discussion

Establishing a threshold for any type of land cover detection method
is complicated. Selecting a threshold can be a time consumptive process
and may lead to a somewhat subjective decision of the derived
threshold value that is to be used (Ji et al., 2009). This issue stems from
the lack of a stable threshold value for water across different types of
water bodies in different locations (although see Fisher et al., 2016).
Others found that stable spectral profiles can be found in deep clean
bodies of water while becoming unstable in shallow/narrow water

bodies (Sivanpillai & Miller, 2010). Once an appropriate threshold is
determined, the threshold value is only representative of the conditions
temporally present in that scene but does not necessarily hold true
when applied to different scenes in different conditions at different
times. Ji et al. (2009) suggested that an adjustment of the threshold
value, to suit the conditions present better, could improve the extrac-
tion results of the water index. However, these adjustments would be
difficult in the automation of a time series that requires a manual ad-
justment of the threshold between images (Huang et al., 2018). Zou
et al. 2017 addressed this issue by leveraging vegetation indices values
(NDVI and EVI) against a water index (MNDWI) to alleviate the need to
establish a static threshold for water delineation. However, an EVI
threshold 0.1 was applied to exclude noise from vegetated wetland
pixels. Zou et al. (2017) found an overall water accuracy of 94% de-
rived from a confusion matrix containing 3216 water and 6726 non-
water ground reference pixels. Our analysis reveals that this high ac-
curacy is location-specific as a result of the conditions inherently found
in the study area. The study area of Oklahoma has more human-made
lakes than any other state and has 55,646 miles of shoreline among the
lakes and ponds (Oklahoma Water Resources Board, 2018). While the
method works well in Oklahoma, the validity of this method deterio-
rates when applied to water bodies in the Caucasus that contains ve-
getation, resulting in an overall accuracy of just 78%. Our method of
selecting an OPC value from a logistic regression can allow for an au-
tomated adjustment of the cut-off threshold values based on the prob-
ability which minimizes the misclassification of the confusion matrix.

Tulbure et al. (2016) employed the use of multiple explanatory
variables in a random forest classification tree algorithm. These ex-
planatory variables consisted of all top of atmosphere (TOA) bands,
selected water indexes (NDWI, MNDWI, AWEI), vegetation indexes
(NDVI, EVI), brightness temperature, as well as slope and hillshade
datasets derived from the SRTM digital elevation model. The resulting
water surface product produces an overall classification accuracy of
99.9%. The validation of the proposed surface water dynamic product
was evaluated based on a stratified random sampling of 500 water/non-
water points(Tulbure et al., 2016). The water stratum employed was
derived from a water body map from Geoscience Australia (2006) and a
maximum extent water map where water was observed at some point
during a 26-year period. The high degree of accuracy found by Turbule
et al. (2016) might partly be the result of having a low amount of re-
ference water pixels (0.5%) as compared to the non-water pixels
(99.4%) used in the confusion matrix. To avoid a small number of
training/validation water pixels, we used a stratified random sampling
of 400 water and 600 non-water pixels for each study area based on a
global maximum water extent product (Pekel et al., 2016). Once com-
pleted, each sampled pixel was then classified manually using Google
Earth data. After the removal of pixels obscured by cloud and snow, the
validation of the logistic regression model was based on 1095 total (756
non-water, 339 water) validation points.

As with the methods described (Zou et al., 20171; Tulbure et al.,
2016), the monthly water map from the ECJRC boasted a high degree of
accuracy when evaluated by statistical performance metrics. However,
despite having a high degree of accuracy, the performance of the ECJRC
Monthly History water map’s performance can vary significantly in the
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Fig. 3. This figure displays the difference in water detection ability based on the OPC maps of a canal just East of the city of Agjabedi, Azerbaijan. (A) displays the
water canal in Agjabedi, Azerbaijan. (B) the ECJRC Monthly History water map. (C) MNDWI water probability map. (D) NDWI water probability map. (E) AWEIsh

water probability map. (F) AWEInsh water probability map.

detection in the type of water body being evaluated. In Figs. 3 and 9, we
observe that the ECJRC Monthly History water product retains poor
performance when detecting the water present in the water canals in
Azerbaijan. The misclassification of water in Figs. 3 and 9 are consistent
with the differences in surface water area detection in Tables 5 and 7.
We must apply caution with the use of statistical performance metrics
when evaluating the effectiveness of a water detection method. A high
degree of water detection accuracy is excellent, but it means very little

if the method does not detect the landcover type the technique was
designed to identify.

In addition to the misclassification errors of built-up areas and
mountain shadows experienced by our proposed method, floating ve-
getation in water bodies has also provided a source of misclassification
error in the extraction of surface water area. Variation in floating
aquatic vegetation can shift the surface reflectance of wetland areas,
causing surface water containing a large percentage of floating
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Fig. 4. This figure shows the difficulties of urban pixel confusion of the OPC method between the selected water index probability maps and the ECJRC dataset for the
month of July. (A) shows a true-color image of Tbilisi, Georgia. (B) the ECJRC Monthly History water map. (C) the MNDWI water probability map. (D) the NDWI
water probability map. (E) the AWEIsh water probability map. (F) AWEInsh water probability.

vegetation to be evaluated as dry land (Jones, 2015). The wetland area
of Lake Arh Gol, Azerbaijan, is one such source of confusion between
vegetation and the surface water area residing underneath. In this
wetland area, the amount of floating vegetation is excluded by the lo-
gistic regression model, due to the high spectral reflectance of the NIR
and red bands on the surface of the water.

Despite the overall accuracy obtained in this water detection

10

method, the limiting factor in all remotely sensed data is the spatial
resolution capabilities of the sensing platform. The spectral values ob-
tained in a pixel are not only influenced by the percentage of the
dominant land cover class present in the pixel but is also influenced by
the proportions of the subordinate landcover classes present (Ji et al.,
2009). As technology progresses and the spatial resolution gets finer,
the number of mixed pixels present in the scene will decrease, resulting
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Fig. 5. This figure shows the difficulties of mountain shadow pixel confusion of the OPC value method between the selected water index probability maps. (A) shows
a true-color image of mountain region Northwest of Tbilisi, Georgia. (B) Displays water detected by the ECJRC Monthly History water map. (C) Displays water
detected by the MNDWI water probability map. (D) Displays water detected by the NDWI water probability map. (E) Displays water detected by the AWEIsh water
probability map. (F) Displays water detected by the AWEInsh water probability.

in a more accurate mapping of surface water bodies. Huang et al.’s
(2018) review of surface water detection from space using optical
sensors, concluded that the future of water monitoring techniques in-
volves the integration of multisource data. Passive remote sensing
platforms rely on the magnitude of reflected wavelengths received at
sensor from the Earth’s surface to create the multispectral datasets that
are used in the application of spectral indices to delineate between

11

landcover types. Water tends to absorb almost all incident radiation,
resulting in reflectance values of a lesser magnitude when compared to
reflectance values of vegetation and urban landcover. Mountain and
urban shadows present in multispectral images, tend to reduce the
amount of incident radiation available to be reflected and received by
the sensor. The wavelength absorbance of water and the reduced
magnitude of reflected wavelengths from shadows, result in similar



J. Worden and K.M. de Beurs

MNDWI Probability Water Map

2 Miles

ey

2 Kilometers
NDWI Probability Water Map

b i
U@Qﬂ‘w USeSH MJ@J\[E (G, end fhe
@18 sl Cominunly

AWEIsh Probability Water Map |

AWEInsh Probability Water Map

Jﬁzﬁ& BS,

USHIMUSCS -(ro@f\[E G, end the
S Usat Comlinumity

Int J Appl Earth Obs Geoinformation 91 (2020) 102159

MNDWI Probability Water Map
with Urban Mask

[:] non-water

water

NDWI Probability Water Map
with Urban Mask

I:] non-water

AWEIsh Probability Water Map ]’
with Urban Mask

non-water

- water

AWEInsh Probability Water Map
with Urban Mask

|:] non-water
B ater

Fig. 6. Displays the misclassification of urban pixels when OPC water map (left) and the application of the urban area mask for the resulting water probability index
(right). MNDWI water probability map (A) and the MNDWI water probability map with the urban mask applied (B); the NDWI water probability map (C) and NDWI
water probability map with the urban mask applied (D); the AWEIsh water probability map (E) and AWEIsh water probability map with the urban mask applied (F);
the AWEInsh water probability map (G) and AWEInsh water probability map with the urban mask applied (H).

water index values derived from the selected bands received by the
sensor, leading to misclassification of pixels in water detection indices
that rely on the normalized differencing of specific bands. To amelio-
rate the potential for misclassification of urban and mountain shadow,
contemporary water detection methods will require the use of multiple
datasets ranging from passive and active sensing platforms to produce
water detection products with greater levels of accuracy.

12

7. Conclusion

The goal of this study was to establish the best performing water
detection index in the Caucasus region. Using all validation points from
all three study areas and both the wet and dry season, we find that the
application of a logistic regression model using an optical surface water
index (MNDWI) resulted in the most accurate open surface water maps
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Fig. 7. This figure highlights the increased separation of water and vegetation values between the water index and water index probability maps. The figure includes
the MNDWI water map (A) and the MNDWI water probability map (B); the NDWI water map (C) and NDWI water probability map (D); the AWEIsh water map (E) and
AWEIsh water probability map (F), and the AWEInsh water map (G) and AWEInsh water probability map (H). Both AWEI water map values were normalized for

comparison between the different indices.

if we are using an impervious surface and elevation mask to prevent
apparent urban and elevation based confusions. This approach achieved
an overall accuracy of 93%, which was similar to what was found for
freely available global surface water products. However, we demon-
strate that while the global surface water product has a high overall
detection accuracy, it was not as reliable in detecting small water fea-
tures, such as irrigation channels. This result agrees with the findings

13

from Ogilvie et al. (2018). In this study, the authors observed that the
ECJRC Monthly History water maps performed well in large bodies of
water, but had substantial water omission errors in water bodies of 5
hectares and less; which correlates with the inability of the ECJRC
water product to detect surface water in small water canals.

Our results also correspond with a study focused on shoreline de-
tection (Kelly & Gontz, 2018) but disagrees with a study in Australia
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Fig. 8. Compares the ability to detect the Upper Garabakh Canal, Azerbaijan, between the selected water indices and the MNDWI probability water map, using the
OPC method. A threshold value of 0 was applied to each water index. (A) Shows a true-color image of the Upper Garabakh Canal. (B) Canal water detected by the
MNDWI probability water map. (C) Canal water identified by MNDWI water index (D) Canal water identified by the NDWI water index (E) Canal water detected by

the AWEIsh water index. (F) Canal water identified by the AWEInsh water index.

that did not find MNDWI to perform the best (Fisher et al., 2016). It is
important to note that we did not evaluate the best performing index
from that study.

Threshold values established for the extraction of surface water
bodies using any type of water index are based on the individual con-
ditions and characteristics of the specific scene being evaluated. The

logistic regression, when applied to a water index and classified
training points, generates a slope and intercept value that best fits the
model of regression. The probability map derived from this logistic
regression creates a scale for the selected water index, unique in its
relationship to the physical characteristics of the area. We demonstrate
that the use of flexible OPC values adapted to individual images allow
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Fig. 9. Compares the ability to detect the Upper Garabakh Canal, Azerbaijan, between the selected water indices, the ECJRC Monthly History water map, and the
MNDWI probability water map, using the OPC value method. The thresholds chosen for the selected water indices were determined by applying the lowest potential
threshold value for each water index, as listed from previous studies. (A) shows a true-color image of the Upper Garabakh Canal. (B) Canal water detected by the
MNDWI probability water map. (C) Canal water identified by the MNDWI water index (-0.05 threshold). (D) Canal water identified by the NDWI water index (-0.19
threshold). (E) Canal water detected by the AWEIsh water index (-0.15 threshold). (F) Canal water identified by the AWEInsh water index (-0.15 threshold).

for the accurate detection of water in complex landscapes without the
need to establish rigid thresholds which are unlikely transferable to

different study regions.
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