Multi-source imaging of time-serial tree and water cover at continental and global scales

Joseph O. Sexton
Min Feng, Saurabh Channan
John R. Townshend (PI)

Christiane Schmullius (collaborator), University of Jena

Global Land Cover Facility
Department of Geographical Sciences
University of Maryland, College Park, MD

NASA LCLUC MuSLI Team Meeting
Rockville, MD
April 13, 2017
Objectives & Timeline

Tree cover
- 2010 & 2015 (epochal)
- 2010-2015 over North & South America

Water cover
- 2010 & 2015 (epochal)
- 2010-2015 over North & South America

<table>
<thead>
<tr>
<th>Product</th>
<th>Epochal</th>
<th>Annual</th>
<th>Uncertainty layer?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree cover (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continental</td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Global</td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Water Cover (binary)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continental</td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Global</td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Acquire data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landsat</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PALSAR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sentinel-2</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Small-footprint Lidar</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Develop algorithms			
Epochal tree cover	*	*	*
Epochal water cover	*	*	*
Annual tree cover	X	X	X
Annual water cover	X	X	X

Preliminary validation			
Epochal tree cover	X	X	
Epochal water cover			
Annual tree cover	X	X	
Annual water cover			

Publication & distribution			
Epochal tree cover	X	XX	
Epochal water cover			
Annual tree cover		X	X
Annual water cover			
Algorithms

• Fusion of estimates: regression tree
Data

- **Optical**
 - Landsat-5, -7, -8
 - GLS -> entire archive
 - Challenges:
 - Access
 - Misregistration
 - Sentinel-2
 - Original (non-harmonized)
 - HLS
 - MODIS

- **SAR**
 - Sentinel-1
 - Regional test—weak tree-cover signal
 - PALSAR-1
 - 2007-2011
 - UAVSAR

- **Response (tree cover)**
 - LiDAR
 - G-LiHT
 - Hi-Res
 - Quickbird
 - Thematic
 - e.g., MODIS VCF

Covariates
Results & products

• Landsat-based
 • Tree cover
 ✓ Global 2010 & 2015
 ✓ Continental 2010-2015
 • Water cover
 ✓ Global 2010 & 2015
 Continental 2010-2015
Tree Cover in Mongolia (2010)
Tree Cover in Mongolia (2015)
Tree Cover and Loss in Mongolia

Tree Cover (2010)
Tree Cover (2012)
Tree Cover Loss (2010-2012)

Tsagaan-Uur Mongolia
Tree Cover and Loss in Mongolia

Onon-Balj Basin National Park, Mongolia
48.989228N, 111.680703E
King Fire

Dates: Sep 13, 2014 – Oct 9, 2014
Cause: Arson
Location: Pollock Pines, CA, USA
Injuries: 12
Burned area: 97,717 acres
King Fire
Dates: Sep 13, 2014 – Oct 9, 2014
Cause: Arson
Location: Pollock Pines, CA, USA
Injuries: 12
Burned area: 97,717 acres

- Annual composite using images before and after the change
- Fmask water mask commission errors
Calibration & validation

• Boreal taiga/tundra ecotone
 • Reference estimates:
 • High-resolution imagery
 • QuickBird
 • n = 425 across North America & Eurasia
 • LiDAR
 • PALS
 • n = 553,640 across North America

• Removed saturation at >80% canopy cover
• Reduced uncertainty (RMSE) by ~ 50%
• More sensitive to cover of trees defined by > 2 m height

• Additional biomes in process
 • G-LiHT

Optical fusion: Landsat and Sentinel-2

Jun 1, 2016 (L) Jun 11, 2016 (L) Jun 15, 2016 (S)

Jun 10, 2016 (S) Jun 21, 2016 (S) Jun 24, 2016 (S)
1,974 HLS Landsat and Sentinel-2 images were applied to estimate tree cover over the U.S. east coast.
Toward optical-SAR fusion

TCC estimated from Sentinel-1 (C-band) VV & VH backscatter

• Estimate tree canopy cover
• Fill gaps (e.g., clouds) in optical estimates
• Discriminate natural forests from plantations

• C-band relationships
 • Insufficient tree-cover signal
 • Imprecise estimates
 • Little deviation from regional mean
 • Improves optical estimates, but not sufficient alone
 • Must combine with L-band and/or optical
Toward optical-SAR fusion

- Estimate tree canopy cover
- Fill gaps (e.g., clouds) in optical estimates
- Discriminate natural forests from plantations

- Sentinel C-band backscatter & ratios
- UAVSAR L-band entropy

- Solely C-band models unlikely to discriminate forest types—need to incorporate with optical
- Possible L-band only model
Toward optical-SAR fusion

- Estimate tree canopy cover
- Fill gaps (e.g., clouds) in optical estimates
- Discriminate natural forests from plantations

- Sentinel C-band backscatter & ratios
- UAVSAR L-band entropy

- Solely C-band models unlikely to discriminate forest types—need to incorporate with optical
- Possible L-band only model

Pinto et al. in prep.
Algorithms

• Fusion of estimates: regression tree
• Fusion of covariates: spectral library
Fusion of covariates: spectral library

• Objective:
 • Model of cover \sim reflectance
 • Robust across scales
 • Robust across seasons
 • Robust across environments

• Requirement:
 • Harmonize SR across sensors
 • MODIS, Landsat, and Sentinel-2
 • Standardize solar zenith angle

• MODIS NBAR has highest correlation to Landsat-7 ETM+ reflectance

• Correction of MOD09GA SR to coincident solar-zenith angle results in higher correlation to Sentinel-2 estimates of SR

Che, X. & J.O. Sexton, in prep.
Fusion of covariates: spectral library

- **Objective:**
 - Model of cover ~ reflectance
 - Robust across scales
 - Robust across seasons
 - Robust across environments

- **Requirement:**
 - Harmonize SR across sensors
 - MODIS, Landsat, and Sentinel-2
 - Standardize solar zenith angle

- Inverting linear mixture model using high-resolution land cover and low-resolution reflectance provides estimates of pure-type reflectance

Difference (RMSD) between Sentinel-2 estimates of surface reflectance and raw and corrected MODIS SR (MOD09GA) is highest when illumination angles are corrected. Correlation of Sentinel-2 SR to corrected MODIS-based SR is greater than it is to MODIS NBAR.

Conclusions

• Fusion of multi-sensor optical estimates of tree-canopy and surface-water cover straightforward
 • Landsat-based datasets in production

• C-band alone not useful for estimating tree cover
 • Must be combined with optical or other SAR wavelengths

• L-band polarimetry appears useful for estimating tree cover and discriminating natural from plantation forests

• First results of cross-scale models appear promising (stay tuned...)
Questions?

References

Sexton, JO; X-P Song; M Feng; P Noojipady; A Anand; C Huang; D-H Kim; KM Collins; S Channan; C DiMiceli; JR Townshend; *International Journal of Digital Earth* 2013, 6, 427-448.