Emissions of Biomass Burning Simulated in Open Burning Combustion Chamber

Asst. Prof. Dr. Somporn Chantara

Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University
Air Pollution in Chiang Mai, Thailand

clear sky

Smoggy sky (March 2016)
PM$_{10}$ & Hotspot number in 2016 in Northern Thailand

Thai std for 24-hr PM$_{10}$ (120 ug/m3)

PM$_{10}$ data obtained from PCD, Thailand
Biomass samples were collected from 9 provinces in Northern Thailand.
Biomass Samping

- Maize residues
- Rice straw
- Leaf litter in mixed deciduous forest (MDF)
- Leaf litter in dry dipterocarp forest (DDF)
Biomass samples for burning experiment

Burning experiment
PM samples on quartz fiber filters

PM sampling
Gas analyzer

- O₂
- CO
- NO
- NO₂
- SO₂
- CO₂ **

Air flow meter

Air flow rate (m/sec)

Testo 350 XL
PM$_{2.5}$ samples were collected on quartz fiber filter.
Emission factors of PM$_{2.5}$ from biomass burning

<table>
<thead>
<tr>
<th>Biomass</th>
<th>Efs of PM$_{2.5}$ (g/kg) (n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice Straw</td>
<td>3.80±2.09b</td>
</tr>
<tr>
<td>Maize Residues</td>
<td>2.11±0.91a</td>
</tr>
<tr>
<td>Leaf Litters (DDF)</td>
<td>3.48±1.36b</td>
</tr>
<tr>
<td>Leaf Litters (MDF)</td>
<td>4.20±2.74b</td>
</tr>
</tbody>
</table>

The emission factors are shown in the bar chart below:

![Bar chart showing emission factors of PM$_{2.5}$ for different biomass types](chart.png)
Emission factors of CO₂, CO and NO from biomass burning

<table>
<thead>
<tr>
<th>Biomass Type</th>
<th>CO₂ (g/Kg) (n = 3)</th>
<th>CO (g/Kg) (n = 3)</th>
<th>NO (g/Kg) (n = 3)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice straw</td>
<td>898±99<sup>a</sup></td>
<td>39.8±11.8<sup>a</sup></td>
<td>2.34±0.35<sup>a</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Maize residue</td>
<td>956±116<sup>a</sup></td>
<td>40.5±6.9<sup>a</sup></td>
<td>2.42±0.34<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Leaf litter (DDF)</td>
<td>1220±96<sup>b</sup></td>
<td>53.8±8.7<sup>a</sup></td>
<td>2.49±0.46<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>Leaf litter (MDF)</td>
<td>954±263<sup>a</sup></td>
<td>49.0±16.7<sup>a</sup></td>
<td>2.95±0.77<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Amazon Forest biomass</td>
<td>1565±128</td>
<td>50.3±17.1</td>
<td>2.74±0.75</td>
<td>Neto et.al. (2013)</td>
</tr>
<tr>
<td>Rice straw</td>
<td>1105.2±189.3</td>
<td>53.2±17.9</td>
<td>-</td>
<td>Zhang et.al. (2013)</td>
</tr>
</tbody>
</table>
Application of EFs

- EFs of pollutants can be used for estimation of emission rate (ER) based on hotspots and area burned.
2017-2019
HAZE FREE THAILAND PROJECT
Monitoring and Analysis of Ambient PM$_{2.5}$ Chemical Composition and Its Toxicity in Northern Thailand
Site 1
Mae Hia (MH)
Chiang Mai
Low volume air sampler (PQ200; BGI, USA) and Minivolume air sampler (MV; Air metric, USA) are used to collect PM$_{2.5}$ on Quartz filter paper (Whatman, UK).
7-SEAS; 7-South-East Asian Studies

- National Central University (NCU), Taiwan
- Laboratory for Atmospheres, Goddard Space Flight Center, NASA
- Faculty of Science, CMU
Thank you for your kind attention
C,H,N content

<table>
<thead>
<tr>
<th>Biomass</th>
<th>% Content (n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Rice Straw</td>
<td>34.3±1.2<sup>a</sup></td>
</tr>
<tr>
<td>Maize Residues</td>
<td>39.4±1.2<sup>b</sup></td>
</tr>
<tr>
<td>Leaf Litters (DDF)</td>
<td>44.6±1.6<sup>d</sup></td>
</tr>
<tr>
<td>Leaf Litters (MDF)</td>
<td>42.6±2.0<sup>c</sup></td>
</tr>
</tbody>
</table>

Sig diff. (p<0.05)

Diagram:

- Blue bars represent %C content.
- Red bars represent %H content.
- Green bars represent %N content.

Legend:
- Rice Straw
- MR
- DDF
- MDF
CO and CO_2 concentrations during biomass burning

Amount of CO2 emitted was about 20-25 times larger than CO.