ENSEMBLE LAND SURFACE MODELING AT JPL

Joshua B. Fisher, Gary Block, Alexandre Guillaume, Kaniska Mallick, Jung-Eun Lee, Chip Miller, Graeme Stephens

Almut Arneth, Ian Baker, Philippe Ciais, Doug Clark, Jon Foley, Chris Jones, John Kimball, Peter Levy, Mark Lomas, Ben Poulter, Colin Prentice, Stephen Sitch, Yeping Wang, Rita Wania, Matt Williams

JPL CLIMATE INITIATIVE
- Earth System Models evaluation against satellite observations.
- Land, ocean, ice, atmosphere intersect through surface-atmosphere exchange; focus on water and energy.
- Reduction in uncertainty in global estimates of land evapotranspiration.

CARVE
- What is the current status of global land surface models in CH₄ and CO₂ fluxes in the Alaskan Arctic?
- Do recent improvements in model physics improve comparison against observations?
- How can we improve models to better represent Arctic processes?

Benchmarking
- ILAMB, MsTMIP, NACP, LBA-DMIP, TRENDY, ENSEMBLES.
- Satellite, Tower, ...
- Upscaling
- Space (pixel, biome, basin, region), time (diurnal, seasonal, annual, inter-annual, decadal; timing, amplitude)
- Uncertainty
- Metrics

ESDR
- What are uncertainties in satellite observations of land surface temperature (LST)?
- How do those uncertainties propagate through models that rely on LST, i.e., LST-based evapotranspiration?

BACK END (COMPILE MODEL OUTPUT, CONVERT UNITS, PRODUCE MODEL DATA/MAPS)

GLOBAL LAND SURFACE/ TERRESTRIAL ECOSYSTEM/ DYNAMIC GLOBAL VEGETATION MODELS

DEDICATED MODELS (e.g., ET)
- UCB, MOD16, BESS
- SEBS, ALEXI, METRIC

GLOBAL LAND SURFACE/ TERRESTRIAL ECOSYSTEM/ DYNAMIC GLOBAL VEGETATION MODELS

APPLICATIONS

FRONT END (INGEST DIFFERENT FORCING DATA, LINK TO MODEL REQUIREMENTS, SPIN-UP SPECIFICATIONS)

FORCING/INPUT DATASETS
- MsTMIP
- MERRA
- Satellite
- Site

Satellite