
Analysis of the relationship between climate and NDVI variability at global scales

Fan-Wei Zeng (fanwei.zeng@nasa.gov)1,2, G. James Collatz2, Jorge Pinzon1,2, Alvaro Ivanoff2,3

2. Justification: Is interannual variability in NDVI explained by climate? Here we examine the sensitivity of NDVI to interannual variability in precipitation and temperature.

3. Data:				Fig. 2 GIMMS – MODIS Aqua NDVI ⁶ (0.25°,
Table 1. Data sets used.				monthly, 2003-2010) anomaly correlations
	Resolution			significant (p<0.05) in 76% of land pixels .
	Spatial (°)	Temporal	Period	
GIMMS 3g NDVI ²	0.08	Semimonthly	1981-2010	
GPCP precipitation ³	2.5	Monthly	1979-2009	
CRU climatology ⁴	0.5	Monthly	1961-1990 (base)	
GISS temperature anomaly ⁵	2	Monthly	1880-2010	-05

- Data sets used: long record; global coverage; consistent with data sets of higher quality (Fig. 2); Use of TRMM precipitation (40°N-40°S, 0.25°, semimonthly, 1998-2010)⁷ gives the same result.
- 4.1. Conducted Pearson's correlation analyses at pixel level with varying lags (of NDVI response to climate) on:
 - 1982-2009 NDVI precipitation anomaly time series (monthly, 1°×1°):
 - 1982-2010 NDVI temperature anomaly time series (monthly, 0.5°×0.5°);
- 4.2. Accounted for first-order temporal autocorrelation following Dawdy and Matalas (1964)8. Only significant correlation coefficients (r values with corrected p values < 0.05, two-tailed t-test) are shown.

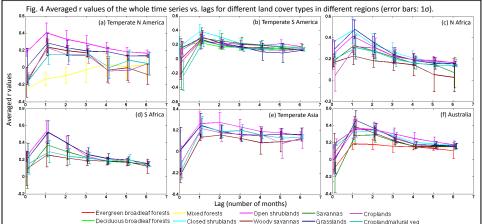

5. Results: **5.1.** NDVI – precipitation anomaly correlations:

Fig. 3 NDVI - precipitation correlations for the whole time series (1 month lag). (Results using monthly precipitation here were consistent with those using accumulative precipitation (not shown).)

- Strongest for 1-month preceding precipitation;
- Significant in 36% of land pixels;
- Positive in arid and semiarid areas where grasslands and shrublands are the dominant land cover types.

- Los, S.O., et al. (2000) J. of Hydrometeorology, 1, 183-199.
- Tucker, C.J., et al. (2005) International J. of Remote Sensing, 26(20), 4485-4498
- 3. Huffman, G.J., et al. (2009) Geophys. Res. Lett., 36, L17808, doi: 10.1029/2009GL040000
- 4. New, M., et al. (1999) J. of Climate, 12(3), 829-856. Hansen, J., et al. (1999) J. of Geophys. Res., 104, 30997-31022.
- 6. MODIS Aqua NDVI (MYD13C2, https://lpdaac.usgs.gov/products/modis_products_table)
- Huffman, G.J., et al. (2007) J. of Hydrometeorology, 8(1), 38-55.
- 8. Dawdy, D.R., and N.C. Matalas (1964) In V.T. Chow, ed. Handbook of Applied Hydrology, A Compendium of Water resources Technology, 68-90, McGraw-Hill Book Company, New York.

Acknowledgements: This work is supported by NASA's Carbon Monitoring System project and Carbon Cycle Science element of the Terrestrial Ecology Program

Higher herbaceous cover (forests -> woody savannas -> savannas -> closed+open shrublands & grasslands): stronger correlations and clearer 1-month peak lag pattern.

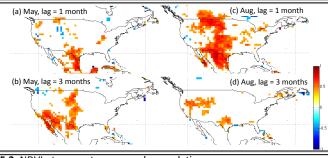
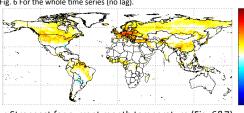
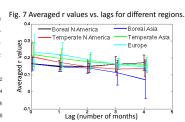
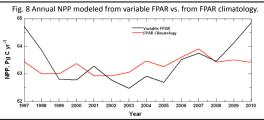




Fig. 5 NDVI - precipitation correlations for May (left) and August (right) in central US.


- Early growing season (May): NDVI most sensitive to precipitation during winter and spring:
- End of growing season (August): NDVI most sensitive to more recent precipitation.

5.2. NDVI - temperature anomaly correlations:

- Strongest for current month temperature (Fig. 6&7);
- Significantly positive in 40% of total land pixels, and in 75% of land pixels north of 35°N (Fig. 6);
- Not associated with land cover types.

6. Conclusion:

- This study confirms a mechanism producing variability in modeled NPP:
- NDVI (FPAR) interannual variability is strongly driven by climate;
- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology (Fig. 8).