Estimating Wetland Methane Emissions in Northern High Latitudes
Utilizing Artificial Neural Networks from 1990 to 2009

1° Zhu, X., Q. Zhuang1, Z. Qin1, L. Song1,2, M. Glagolev3

1. Department of Earth & Atmospheric Sciences, Purdue University; 2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; 3. Moscow State University, Russia

* Email: zhu123@purdue.edu

Introduction

Wetlands are thought to be the single largest natural source of atmospheric methane (CH4). Northern high latitudes (north of 45 °N) contains vast areas of wetlands, and CH4 emissions from wetland ecosystems in the region provide a potentially positive feedback to global climate warming. Compared to low-latitudes, the region has been experiencing more dramatic environmental changes, including higher temperatures, increases in precipitation, and melting of permafrost. The alterations of soil thermal and hydrological regimes in the region have resulted in changes in the magnitude and timing of CH4 fluxes. To date, the uncertainty of CH4 budgets of northern wetlands in the region is still large. Here, we use a data-driving Artificial Neural Networks (ANN) approach to estimate wetland CH4 emissions in northern high latitudes, based on available site-level measurements of CH4 fluxes.

Methods

We use an ANN model, Generalized Regression Neural Network (GRNN, Zhuang et al., 2012), to represent non-linear regression between field measurements of CH4 fluxes and six explanatory variables: mean air temperature (T), precipitation (P), water table depth (WTD), soil organic carbon (SOC), soil total porosity (TP), and soil pH. Driven with spatially-explicit data of monthly climate, hydrology, and soil properties, the developed ANN model is then extrapolated to northern high latitudes to estimate wetland CH4 emissions from 1990 to 2009 at a 0.5° resolution.

Site-level data collected from peer-reviewed literatures contain 1049 records at 54 sites, covering a range of wetland types under various field conditions. For spatially-explicit data, the monthly climate data are extracted from CRU TS3.1 datasets (Mitchell & Jones, 2005). The soil properties data are taken from ISRIC-WISE spatial soil database (Batjes, 2006). The fraction of wetland extent is determined by the 30-second GLWD-3 dataset (Lehner & Döll, 2004), while the WTD of wetlands is derived from hydrological model simulations (Zhuang et al., 2002; Zhuang et al., 2004) combining with a TOPMODEL-based method (Lu & Zhuang, 2012).

Results

The developed ANN model fits well with the observed CH4 fluxes at site level. The mean annual wetland CH4 emissions in northern high latitudes are estimated to be 48.7 Tg CH4 yr⁻¹ with an uncertainty range of 44.0-53.7 Tg CH4 yr⁻¹, and there are both significant inter-annual and seasonal variations of emissions during the period of 1990-2009. We find that the regional wetland CH4 emissions are most sensitive to variations of water table position. The simulated wetland CH4 emissions show a large spatial variability due to variations in hydrology, climate, and soil conditions. This study highlights the importance of better characterization of the hydrological dynamics of wetlands (i.e., water table position), in quantifying regional CH4 emissions from northern wetlands.

Summary

The developed ANN model fits well with the observed CH4 fluxes at site level. The mean annual wetland CH4 emissions in northern high latitudes are estimated to be 48.7 Tg CH4 yr⁻¹ with an uncertainty range of 44.0-53.7 Tg CH4 yr⁻¹, and there are both significant inter-annual and seasonal variations of emissions during the period of 1990-2009. We find that the regional wetland CH4 emissions are most sensitive to variations of water table position. The simulated wetland CH4 emissions show a large spatial variability due to variations in hydrology, climate, and soil conditions. This study highlights the importance of better characterization of the hydrological dynamics of wetlands (i.e., water table position), in quantifying regional CH4 emissions from northern wetlands.

Acknowledgement: The study is supported by NASA LCLUC program.