The Standardized Spectral Mixture Model

We assembled a Landsat global mixing space from a set of 100,000 Landsat spectra selected to represent the spectral diversity of the land covers across various biomes. The spectra within each biome also attempted to maximize the transitions between land covers.

The orthogonal projections of the three low order principal components of the global Landsat mixing space contain 99% of the spectral variance of the linear mixture model.

The projections were used to identify 3 endmembers, corresponding to high albedo substrate, vegetation, and dark surfaces (SVD model). The colored endmember spectra in the lower right quadrant are calculated as the average of a suite of 9 individual pixels spectra (shown in white).

Data for Ground Validation

- We used 74 ground measurements of canopy cover (Fc) made in commercial fields of the San Joaquin Valley of California, recording with 11 Landsat-5 overpass dates for the period April through October 2008. 17 different crops (seasonal and perennial) are represented in the dataset. (Johanson and Trout, 2012). Fc measurements were calculated from images taken with an agricultural digital camera (TetraCam) suspended from a frame above the crop and aimed down vertically.
- The Landsat-5 images (path 43, row 35) for the dates on which Fc measures are available were processed to surface reflectance with the Ledaps software.
- Fractions and vegetation indices were calculated from the Landsat images and compared to ground measurements

Motivation

The goal of this project is to characterize urban expansion over North America since 1990 through the development of a consistent, robust, scalable, physically-based methodology using Landsat observations that represents urban land cover as continuous fractions of a limited set of different components, i.e., vegetation, high albedo substrate, and dark surfaces and shadows. To avoid making assumptions on the categorization of pixels into one of the different components, we use the technique of spectral mixture analysis. Through the funded work we seek to understand what are the aggregate physical properties (e.g. aggregate albedo, vegetation abundance, shadow fraction) associated with the diverse and heterogeneous urban landscapes relative to other major land cover classes.

The goal of this study is to understand: 1) if we can use a global standardized spectral mixture model accurately measure the surface vegetation fraction from Landsat data without the need for local calibration; 2) if there are concrete advantages of calculating vegetation fractions over vegetation indices.

Results

The comparison of the Vegetation Fraction from the global set of 100,000 Landsat spectra with vegetation indices shows a strong linear relationship with Tasseled Cap Greenness, EVI, and SAVI. Tasseled Cap Greenness is strongly linear and tightly correlated to vegetation fraction, but reaches a maximum value of 0.5. EVI and SAVI show both a positive bias, with SAVI saturating at vegetation fractions > 0.6. NDVI shows a strong saturation at less than 0.5 vegetation fraction, with a wide range of responses across all fractions.

Applications

The inversion of a constrained standarized spectral mixture model can be applied to any scene from the Landsat archive to obtain reliable measures of substrate, dark surfaces and vegetation fractions. Here on the left we show continuous surfaces of high albedo substrates, dark surfaces and shadows and vegetation cover for the 2005 peak growing season of California.

Conclusions and Future Work

With a standardized spectral mixture model we can obtain reliable physical measures of vegetation fractions from Landsat data while bypassing the need for ground calibration that is required when using vegetation indices.

The limited requirements of this approach make it suitable for the calculation of vegetation fractions globally.

Future work will explore how to best combine the fractions from the high albedo substrate and dark surfaces and shadows to measure the expansion of the built environment.

References


Acknowledgments

This research was supported by the NASA Land Use Land Cover Change program. We would like to thank Lee Johnson of California, Thomas Trout and Jim Garnett for providing the data for the ground validation.

List of crops for which ground measurements were available: tomato (4), safflower (5), wheat (1), onion (4), barley (1), garlic (1), sugar beet (1), grape (5), bell pepper (5), cotton (3), corn (1), almond (1), alfalfa (2), pistachio (4), cantaloupe (5), watermelon (3), and broccoli (11)