

Quantifying Grassland-to-Woodland Transitions: Implications for Carbon and Nitrogen Dynamics in the Southwest United States

Carol A. Wessman¹, Steven R. Archer², Gregory P. Asner¹, C. Ann Bateson¹

University of Colorado¹

Texas A&M University²

Introduction

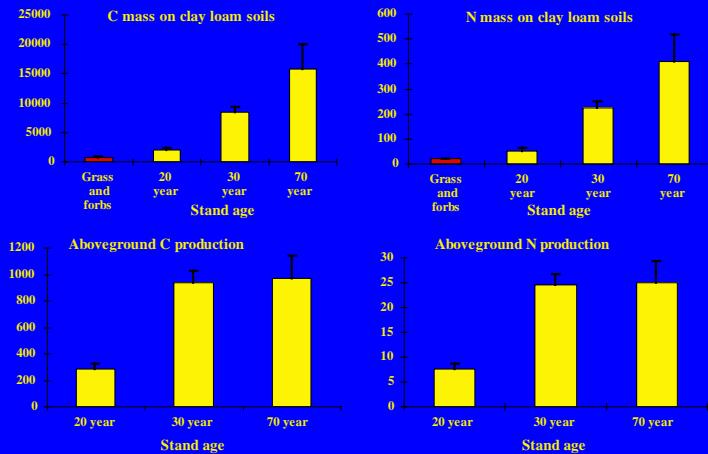
Many dryland ecosystems are mixtures of grasses, shrubs and trees. The balance between these contrasting lifeforms is regulated by interactions between climate, soils, herbivory and disturbance.

A shift in one or more of these factors can dramatically alter ecosystem structure and function. In many drylands, woody plants have displaced grasses in recent history....

Project Goal: To understand spatial and temporal changes in vegetation structure (herbaceous and woody species) associated with land management and to quantify how these changes affect sequestration or liberation of C-N across topo-edaphically diverse landscapes.

Objectives:

1. Develop an understanding of temporal changes in plant and soil C and N for grassland-to-woodland chronosequences
2. Improve our ability to remotely quantify grass and woody plant cover and properties in spatially complex regions

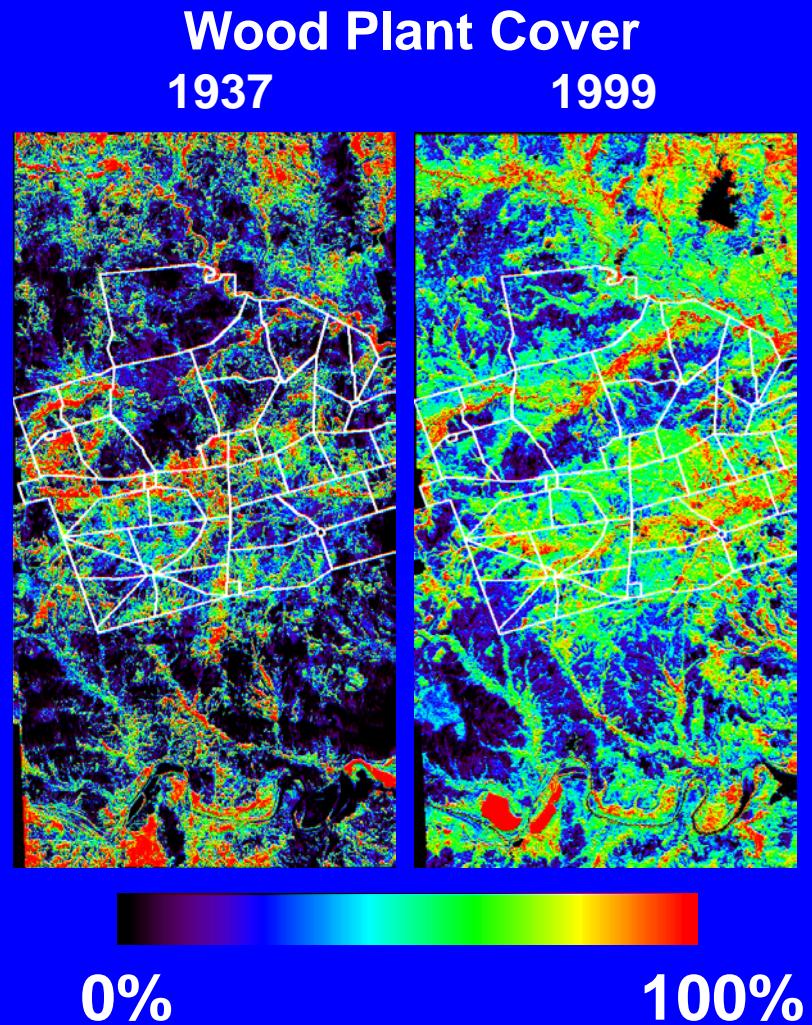

Results

(1) Major improvements in understanding historical and spatial changes in woody plant cover in North Texas rangelands, and the consequences for regional carbon and nitrogen stocks

Plant and soil carbon and nitrogen stocks increase with woody plant encroachment in North Texas rangelands.

(2) Dramatic improvements in our ability to remotely quantify grass and woody plant cover, structure and biomass in spatially complex regions

Aboveground woody canopy cover and biomass (carbon) have increased in the past 70 years.



Regional Biomass Estimates for North Texas Site

Conclusions

- Spatial and temporal changes in woody plant biomass are substantial in Texas rangelands and they impact soil carbon and nitrogen stocks
- New remote sensing methods that employ multi-view angle and high spatial resolution observations can be integrated to estimate plant canopy cover in spatially complex ecosystems such as savannas and shrublands.
- New remote sensing approaches can be directly combined with field measurement networks/campaigns to estimate aboveground vegetation carbon stocks.

Publications

Archer, S, CJ Stokes.2000. Stress, disturbance and change in rangeland ecosystems, pp. 17-38. *In: Rangeland Desertification* (O Arnalds and S Archer, eds). Advances in Vegetation Science Vol. 19, Kluwer Publishing Company.

Archer, S, TW Boutton, KA Hibbard. 2000. Trees in grasslands: biogeochemical consequences of woody plant expansion. *In: Global Biogeochemical Cycles in the Climate System* (E-D Schulze, SP Harrison, M Heimann, EA Holland, J Lloyd, IC Prentice, D Schimel, eds.). Academic Press, San Diego (In Press)

Arnalds, O, S Archer, eds. 2000. *Rangeland Desertification*. Advances in Vegetation Science Vol. 19, Kluwer Publishing Company. (<http://www.rala.is/rade/>)

Asner, GP, CA Bateson, N El Saleous, JP Privette, CA Wessman. 1998. Vegetation structural effects on carbon uptake using satellite data fusion and inverse modeling. *Journal of Geophysical Research* 103:28839-28853.

Asner, GP, RF Hughes, KC Cody, S Archer, J Ansley, CA Wessman. Changes in woody plant cover and aboveground carbon in North Texas rangelands, 1937-1999. In preparation to *Ecological Applications*.

Asner GP, CA Wessman, CA Bateson, JL Privette. Impact of tissue, canopy and landscape factors on reflectance variability of arid ecosystems. *Remote Sensing of Environment*. In press.

Asner, GP, CA Wessman, DS Schimel. 1998. Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling. *Ecological Applications* 8:926-941.

Bateson, CA, GP Asner, and CA Wessman. Endmember bundles: A new approach to incorporating endmember variability in spectral mixture analysis. *IEEE Transactions on Geoscience and Remote Sensing* 38:1083-1094.

Boutton, TW, SR Archer, AJ Midwood. 1999. Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical savanna. *Rapid Communications in Mass Spectrometry* 13:1263-1277.

Hibbard, KA, S Archer, DS Schimel, DV Valentine. 2000. Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. *Ecology* (In Press)

Hughes, R.F., G. Asner, S. Archer, and C. Wessman. Ecosystem-scale implications of woody encroachment: storage and production of mesquite woodlands and their impact on C and N dynamics on rangelands of northern Texas. In prep for *Ecological Monographs*.

Kreuter, UP, SR Archer, CJ Scifres. 1999. Bioeconomic basis for woody plant management, pp. 842-843. IN: D Eldridge & D Freudenberger, eds, Proceedings, VI International Rangeland Congress, Townsville, Australia

Midwood, AJ, TW Boutton, SR Archer, SE Watts. 1999. Water use by woody plants on contrasting soils in a savanna parkland: assessment with ^{2}H and ^{18}O . *Plant and Soil* 205:13-24.

Stroh, JC, S Archer, JA Doolittle, LP Wilding. 2000. Detection of edaphic discontinuities with ground-penetrating radar and electromagnetic induction. *Landscape Ecology* (In Press).

White, MA, GP Asner, RR Nemani, JL Privette, and SW Running. Monitoring fractional cover and leaf area index in arid ecosystems: digital camera, radiation transmittance, and laser altimetry results. *Remote Sensing of Environment*. In press.