Program Elements

Ocean Biology and Biogeochemistry
 Paula Bontempi and Carlos Del Castillo
Terrestrial Ecology
 Diane Wickland and Bill Emanuel
Land Cover and Land Use Change
 Garik Gutman
Biodiversity and Conservation Biology
 Woody Turner

Diane Wickland, Focus Area Lead
How is the Earth changing and what are the consequences for life on Earth?

- How are global ecosystems changing?
- What changes are occurring in global land cover and land use, and what are their causes?
- How do ecosystems, land cover and biogeochemical cycles respond to and affect global environmental change?
- What are the consequences of land cover and land use change for human societies and the sustainability of ecosystems?
- What are the consequences of climate change and increased human activities for coastal regions?
- How will carbon cycle dynamics and terrestrial and marine ecosystems change in the future?
Carbon Cycle and Ecosystems Roadmap

Goals: Global productivity and land cover change at fine resolution; biomass and carbon fluxes quantified; useful ecological forecasts and improved climate change projections

Knowledge Base

Integrated global analyses
Sub-regional sources/sinks
Process controls; errors in sink reduced

Models w/improved ecosystem functions
Reduced flux uncertainties; global carbon dynamics

Terrestrial carbon stocks & species habitat characterized
CH₄ sources characterized and quantified

Regional carbon sources/sinks quantified for planet

KNOWLEDGE BASE

2002: Global productivity and land cover resolution coarse; large uncertainties in biomass, fluxes, disturbance, and coastal events

Improvements:

- Case Studies
- Process Understanding
- Models & Computing Capacity

Systematic Observations

Land Cover (Landsat) ➔ LDCM ➔ Land Cover (OLI)

Ocean Color (SeaWiFS, MODIS) ➔ Systematic Observations ➔ Ocean/Land (VIIRS/NPP) ➔ Ocean/Land (VIIRS/NPOESS)

Vegetation, Fire (AVHRR, MODIS)

- Technology development
- = Field Campaign
- T = High-Resolution Atmospheric CO₂
- T = Physiology & Functional Types
- T = Coastal Carbon
- T = Vegetation 3-D Structure, Biomass, & Disturbance
- T = Southern Ocean Carbon Program, Air-Sea CO₂ Flux
- T = Global Ocean Carbon / Particle Abundance
- T = Global CH₄; Wetlands, Flooding & Permafrost
- T = Global Atmospheric CO₂ (OCO)
- T = N. American Carbon Program
- T = Land Use Change in Amazonia

Funded
Unfunded
Partnership

Report
Where we are now

<table>
<thead>
<tr>
<th>Global primary productivity and land cover time series available at coarse (~8 km resolution); only short time periods and certain regions at higher resolutions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available observations (in situ) of global CO₂, biomass, plant community vertical structure, and species functional groups insufficient to resolve many issues.</td>
</tr>
<tr>
<td>Large uncertainties in N. Hemisphere terrestrial carbon storage, ocean uptake and storage, permafrost outgassing, and tropical land use effects. Global carbon budget not balanced.</td>
</tr>
<tr>
<td>Ecosystem and carbon models resolve only large year-to-year variations; multiple controlling processes not well quantified. 50-year projections vary widely.</td>
</tr>
</tbody>
</table>

Where we plan to be

<table>
<thead>
<tr>
<th>Decadal variability in global productivity quantified at moderate (~1 km) resolution; Periodic global land cover change analyzed at fine (~30 m) resolution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>New observations (space-based) enable quantification of carbon and nutrient storage and fluxes, disturbance and recovery processes, and ecosystem health.</td>
</tr>
<tr>
<td>Carbon sources and sinks identified and quantified at sub-regional scales (~100 km), with small errors. Global carbon budget balanced on annual basis.</td>
</tr>
<tr>
<td>Earth system models able to correctly portray most interannual variations and multiple, interacting controlling processes, with sub-regional specificity and useful predictive capability.</td>
</tr>
</tbody>
</table>

2002 ~ 2015
Carbon Cycle and Ecosystems Roadmap

Knowledge Base

- Funded
- Unfunded
- Partnership
- \(T \) = Technology development
- \(= \) Field Campaign
- Report

Integrated global analyses
Sub-regional sources/sinks
Process controls; errors in sink reduced
Models w/improved ecosystem functions
Reduced flux uncertainties; coastal carbon dynamics
Reduced flux uncertainties; global carbon dynamics
Terrestrial carbon stocks & species habitat characterized
CH4 sources characterized and quantified
Regional carbon sources/sinks quantified for planet
N. America’s carbon budget quantified
Effects of tropical deforestation quantified; uncertainties in tropical carbon source reduced

Vegetation 3-D Structure, Biomass, & Disturbance
Terrestrial carbon stocks & species habitat characterized

2002: Global productivity and land cover resolution coarse; Large uncertainties in biomass, fluxes, disturbance, and coastal events

Improvements:
- Case Studies
- Process Understanding
- Models & Computing Capacity

Systematic Observations
- Ocean Color (SeaWiFS, MODIS)
- Vegetation, Fire (AVHRR, MODIS)
- Ocean/Land (VIIRS/NPP)
- Ocean/Land (VIIRS/NPOESS)
- LDCM
- Land Cover (Landsat)
- Land Cover (OLI)

NA Carbon NA Carbon Global C Cycle Global C Cycle

Goals: Global productivity and land cover change at fine resolution; biomass and carbon fluxes quantified; useful ecological forecasts and improved climate change projections

2002: Global productivity and land cover resolution coarse; Large uncertainties in biomass, fluxes, disturbance, and coastal events
The central objective of the North American Carbon Program is to measure and understand the sources and sinks of CO$_2$, CH$_4$, and CO in North America and in adjacent ocean regions.
• Develop quantitative scientific knowledge, robust observations, and models to determine the emissions and uptake of CO$_2$, CH$_4$, and CO, changes in carbon stocks, and the factors regulating these processes for North America and adjacent ocean basins.

• Develop the scientific basis to implement full carbon accounting on regional and continental scales. This is the knowledge base needed to design monitoring programs for natural and managed CO$_2$ sinks and emissions of CH$_4$.

• Support long-term quantitative measurements of fluxes, sources, and sinks of atmospheric CO$_2$ and CH$_4$, and develop forecasts for future trends.
1. What is the carbon balance of North America and adjacent oceans? What are the geographic patterns of fluxes of CO$_2$, CH$_4$, and CO? How is the balance changing over time? (Diagnosis)

2. What processes control the sources and sinks of CO$_2$, CH$_4$, and CO, and how do the controls change with time? (Attribution/Processes)

3. Are there potential surprises (could sources increase or sinks disappear)? (Prediction)

4. How can we enhance and manage long-lived carbon sinks ("sequestration"), and provide resources to support decision makers? (Decision support)
Observations & Experiments ⇒ Science Results ⇒ Estimates-Uncertainties
Continental “wall-to-wall” by remote sensing
– 80 projects involving satellite and aircraft remote sensing
– NASA supports 65

Extensive inventories (FIA and NRI)
– More than 170,000 sites at 5-10 yr intervals
– Improved sampling for carbon

Intermediate intensity with systematic sampling
• Pilot Forest Service projects
• Potential NEON contributions
• Requires substantial additional funding

Very intensive process investigations
• ~100 AmeriFlux, Agriflux, LTER, and similar sites
• Adjacent open oceans are major sources and sinks for carbon transported across North America through the atmosphere.

• River-dominated margins and coastal upwelling regions merit special attention due as boundaries on North America.

• Coordination with Ocean Carbon and Climate Change Program (OCCC).
The North American Carbon Program (NACP) conducts intensive experimental and field campaigns to:

- Address specific science issues, questions and hypotheses;
- Reduce specific, major uncertainties;
- Develop and test methods and models;
- Calibrate and validate remote sensing observations relevant to NACP objectives; and
- Produce critical data or analyses.

NACP intensive campaigns may focus on a specific region or regions within North America.

But the NACP is not a collection of intensive campaigns.
Pieter Tans, NOAA-CMDL

- Develop optimized **sampling schemes for field and atmospheric measurements** to efficiently monitor regional carbon stocks and fluxes.
- Use **top-down approaches** to provide a region-level estimate of net carbon fluxes during short periods (weeks) with an accuracy of 10% by increasing spatial and temporal coverage of atmospheric measurements and by enabling improvements in the parameterization of transport/mixing processes in the lower atmosphere.
- Use a variety of **bottom-up techniques** to provide daily to annual estimates of carbon stocks and fluxes over a region by improving process model structure and parameterization. A hierarchy of field and remote sensing observations should be used for model testing, development of data assimilation techniques, and model parameterization.
- **Compare the top-down and bottom-up approaches** and iteratively improve the independent approaches on daily to annual time scales.
- Produce carbon stock and flux maps at various levels of spatial and temporal detail, and compare the results of the top-down and bottom-up approaches to diagnose methods.
The multi-state area of the upper Midwestern United States comprising eastern South Dakota, eastern Nebraska, eastern Kansas, northern Missouri, Iowa, southern Minnesota, southern Wisconsin, and Illinois.
Multiple Scale Observations

Up-scaling
Prediction

ha
m
μm

10 km
1000 km

Downscaling
Verification
Requirements

- Updated program plan and roadmap chart
- Renewed input from the broad community and a fresh look at priorities
- Critical evaluation in light of new NASA (e.g., Exploration and agency-wide roadmapping) and other (e.g., CCSP, GEOSS) priorities

Approach

- Participation by NASA Ocean Biogeochemistry, Land Cover and Land Use Change, Terrestrial Ecology, and Biodiversity program managers and researchers (parallel working groups, coordinated by focus area steering committee)
- ~18 months to seek broad inputs, assess and prioritize, write and iterate, as necessary
- White papers, workshops, major community conference(s) – use existing science team meetings, as appropriate, to produce one integrated program plan for the focus area
Transition from Missions to Time-Series Measurements

- Form one team combining requirements for measurements of land cover/change (including snow cover), vegetation biophysical properties & indices, land surface temperature, and fire.

- Build on experience of past and present mission teams and data system activities. Start with currently funded team members and PIs doing relevant research; compete membership as needs and opportunities arise.

- Scientists using the data as well as algorithm developers and data system managers must be on the team.

- The team must include representatives from other U.S. agencies with responsibilities for operational measurements or end uses.

- NASA HQ will appoint a steering committee soon.

- Early activities will identify climate-quality data records, evaluate quality/utility of data products, and assess data system, service, and archive needs.