MAPPING AND MODELLING FOREST CHANGE IN A BOREAL LANDSCAPE

Annual Report
2000-2001

John Pastor
Natural Resources Research Institute
University of Minnesota Duluth
5013 Miller Trunk Hwy.
Duluth, MN 55811
Jpastor@nrri.umn.edu

Peter Wolter
Natural Resources Research Institute
University of Minnesota Duluth
5013 Miller Trunk Hwy.
Duluth, MN 55811
Pwolter@nrri.umn.edu
ABSTRACT

Timber harvesting is one of the major factors altering the species composition, age class distribution, and carbon fluxes over much of forested North America. Timber harvesting in Minnesota, the nation’s largest paper producer, is expected to increase by approximately 25% in the next several decades to supply increased fiber demand for paper mill expansions. Similar expansions are also expected in adjacent northwestern Ontario. In contrast to these managed forested lands, the 2.0 million ha of the Boundary Waters Canoe Area (BWCA) and Voyageurs National Park (VNP) in Minnesota and adjacent Quetico Provincial Park in Ontario is the largest contiguous, forested wilderness area in North America. This wilderness landscape has its own disturbance regime generated mainly by large fires (Heinselman 1973) which is distinctly different from the anthropogenic disturbance regime imposed by timber harvesting immediately outside the BWCA-VNP-Quetico wilderness (Hall et al. 1991). Much of the forest is old-growth conifer, but there are large patches of early-mid successional forest as well.

There is no other place in the 48 contiguous states where there are large, matched, forested landscapes with contrasting natural and anthropogenic disturbance regimes. Therefore, Minnesota and adjacent northwestern Ontario is a natural “landscape laboratory” for determining the impact of extensive timber harvesting on landscape structure in comparison with an equivalent large landscape of uncut forest subject only to a natural disturbance regime.

We are using multitemporal data from Landsat Thematic Mapper (TM) 5 or 7 to classify forest cover to near species level (Wolter et al. 1995), then map the changes in the forest mosaic through time on a biannual basis to determine successional pathways under natural and managed disturbance regimes. Markov transition matrices are being developed from these data and analyzed using Markov theory (Pastor et al. 1993) to assess current trends in forest cover and steady state land cover distributions in order to help shape management policy at federal, state, and local levels.

Key Words
Research Fields: Forest Ecology, Forest Land Use Change
Geographic Area/Biomes: Boreal Forests
Remote Sensing: Landsat TM
Methods: Multitemporal imaging, Markov chains
QUESTIONS, GOALS, APPROACHES

Our activities fit several desired NASA goals as outlined in pp. 1-4 of NRA 99-OES-06 (July 29, 1999): (i) build a quantitative assessment of landscape and land use change using historical archives of satellite data; (ii) develop the scientific understanding and models necessary to simulate processes taking place and evaluate the consequences of observed and predicted changes; (iii) develop techniques, algorithms, models, and data sets needed for eventual operational monitoring of forest cover as part of the Global Observation of Forest Cover Project; (iv) address human induced and natural disturbance, incorporate the use of remotely sensed data, and provide an improved understanding of measurement techniques and requirements needed to improve current or future satellite based monitoring of disturbance. Our work is entirely under the GOFC theme.

We are documenting the changes in land cover by developing change matrices from overlays of georeferenced scenes taken at different dates. By comparing changes inside the Quetico-Superior Wilderness with those outside in manged forests, we will be able to determine the extent of natural vs. anthropogenic causes of these changes. Finally, by implementing the change matrices as Markov chains, we are able to project the consequences of these rates of change forward in time, both to the proximate future (next several decades) to steady state at some later time.

The study region encompasses approximately 137,000 km² or six Landsat Thematic Mapper (TM) footprints in northeast Minnesota and southern Ontario (Fig. 1). The Boundary Waters Canoe Area, Voyageurs National Park, Quetico Provincial Park, Superior National Forest, and the Chippewa National Forest are all located within the boundary of this study. The remaining area is largely managed state, county, or industrial forest. The ecology of this region, including disturbance regimes, has been previously described by Heinselmann (1973), Ohmann and Grigal (1979), Swain (1980), Baker (1989), Johnston and Naiman (1990a,b), Frelich and Reich (1995), Pastor and Mladenoff (1992), Pastor et al. (1993), and Mladenoff and Pastor (1993), among many others. Six TM data frames will be used corresponding to Worldwide Reference System (WRS) coordinates path 26-28 row 26-27; collectively centered at approximately 48°26’N, 92°20’W

Although we are not formally involved in social science research, we have been and will continue to be in contact with policy makers within the State of Minnesota regarding the nature, causes, and consequences of these changes. These policy makers include resource managers of the Minnesota Dept. of Natural Resources and the U.S. Forest Service.

Our goals for this time period were to: (1) obtain scenes for northeastern Minnesota and adjacent Ontario for 1990, 1995, and 2000; (2) interpret and classify the scenes using multitemporal image analysis; (3) develop user and producer error matrices based on forest inventory analysis plot data; (4) clarify some mathematical problems in the use of Markov chains to analyze and project trends in land cover; (4) make preliminary projections of changes in land cover using Markov chains parameterized from the change matrices.
One of the mathematical problems we discovered involved adjusting the transition probability (Markov) matrices to account for user and producer error, as originally proposed by Hall et al. (1991). The elements of the user and producer error matrix are thought to be conditional probabilities of correspondence between the classified scene and that actually observed on the ground during forest inventory surveys. However, we have found that this is strictly true only if the ground survey was completed in the same period and the satellite image was taken. If the ground survey was completed over an extended period of time, then the conditional probabilities in the error matrix represent the sum of a conditional misclassification probability (true error) and a transition that took place on the ground between the time when the satellite image was acquired and the survey team visited the site. Thus, the conditional probabilities in the error matrix overestimate the actual misclassification error. If the error matrix is then used to adjust the transition probabilities by the method specified by Hall et al. (1991), then the transitions for a given class sum to more than 1.0 (we have a mathematical proof of this).

Therefore, without knowing the actual transitions on the ground (since they occur during the time of the survey itself) we cannot adjust the transition matrix to account for conditional misclassification error. Our best approach is then to minimize the probability of misclassification by decreasing user and producer error. We have done this by aggregating cover classes into six high-level classes: closed canopy forests, regeneration, water, development, wetlands, and upland grass (include agriculture). The user and producer errors for these are < 10%. Since this includes both true misclassification error and unknown transitions, the misclassification errors are therefore very small. We will proceed with a Markov analysis of this high level classification with adjustment of the transition matrices by the method of Hall et al. (1991)
SIGNIFICANT NEW FINDINGS

Markov projections of anticipated changes in cover during the next 60 years (one rotation length) indicated that, should these rates of change remain constant, mature forest cover will decline from the current 60% of the landscape to less than 40% because of conversion to regenerating aspen after clearcutting. Regenerating aspen will climb correspondingly from slightly less than 10% of the landscape to greater than 33%. This is an enormously rapid rate of change, probably far greater than what is expected with climate warming alone.

NEW PRODUCTS

Change detection and classifications for the first two time-steps of the study (1984-1990 and 1990-1995) for WRS 26/27 and 27/27 were completed with the Landsat TM data received in this first year of funding. In year two, we plan to finish change detection within Landsat TM footprints 26/27, 27/27, and 28/27 for time-steps 1995-2000. Also, the Ontario Ministry of Natural Resources provided necessary ground truth information needed to begin classification on the Canadian portion of our study area (26/26, 26/27, and 26/28).

REFERENCES

CONCLUSIONS

Based on wall-to-wall coverage and classification of rates of forest cover change in northern Minnesota’s managed forests, we anticipate a significant decline in mature forest cover and a corresponding increase in regenerating aspen in clearcuts in the next 60 decades unless forest policies change to alter these transition probabilities.

PUBLICATIONS AND PRESENTATIONS

Preliminary results of this work will be presented at:

3rd North American Forest Ecology Workshop
Issues of Scale: From Theory to Practice
June 24-27, 2001
Duluth, Minnesota

86th Annual Meeting of the Ecological Society of America
August 5-10, 2001
Madison, Wisconsin

Also, a manuscript of our preliminary results is in review with the Journal of Landscape Ecology: