Monitoring the dynamics of abandoned agriculture, fallow fields and grasslands

Volker C. Radeloff, H. Yin, J. Buchner, K. E. Lewinska, S. Spawn, E. Razenkova, A. Rizayeva, N. Rogova, University of Wisconsin-Madison
Patrick Hostert, and Patrick Griffiths, Humboldt University, Berlin

LCLUC/MuSLI Science Team Meeting, 4/10/2019
Approach
Approach

Data preparation

Step-1
Annual data
- Active agriculture
- Non-woody herbaceous
- Woody
- Non-vegetated

Step-2
Multi-year
- Permanent agriculture
- Recultivated agriculture
- Non-woody abandoned agriculture
- Fallow Fields
- Permanent grasslands
- Woody abandoned agriculture
- Permanent woody

Masking of clouds, snow, and ice, and data harmonization
Training data generation

Step-1 Calibration samples
- Ground truth collection

Step-2 Class separation
- Calculate metrics of the features
- Threshold selection

Step-3 Sample generation
- Pixel-clustering
- Cluster-centroid generation
- Quality control
Step 1 Calibration samples
Step 2 Class separation
Step 3 Sample generation
Approach

Data preparation

Masking of clouds, snow, and ice, and data harmonization

Step-1
Annual data
- Active agriculture
- Non-woody herbaceous
- Woody
- Non-vegetated

Step-2
Multi-year
- Permanent agriculture
- Recultivated agriculture
- Non-woody abandoned agriculture
- Fallow Fields
- Permanent grasslands
- Woody abandoned agriculture
- Permanent woody
Results
Results

<table>
<thead>
<tr>
<th>Where</th>
<th>Biome</th>
<th>Major cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smolensk, Russia</td>
<td>Temperate forests</td>
<td>Socio-economics</td>
</tr>
<tr>
<td>Orenburg, Russia</td>
<td>Semi-arid</td>
<td>Socio-economics</td>
</tr>
<tr>
<td>Volgograd, Russia</td>
<td>Grasslands</td>
<td>Socio-economics</td>
</tr>
<tr>
<td>USA, Nebraska</td>
<td>Grasslands</td>
<td>Economics</td>
</tr>
<tr>
<td>USA, Wisconsin</td>
<td>Temperate forests</td>
<td>Economics</td>
</tr>
<tr>
<td>Brazil, Amazon</td>
<td>Tropics Rainforest</td>
<td>Economics</td>
</tr>
<tr>
<td>Brazil, Cerrado</td>
<td>Tropics Dry Forest</td>
<td>Economics</td>
</tr>
<tr>
<td>Sardinia, Italy</td>
<td>Mediterranean</td>
<td>Socio-economics</td>
</tr>
<tr>
<td>Iraq</td>
<td>Semi-arid</td>
<td>Armed Conflict</td>
</tr>
<tr>
<td>S-China</td>
<td>Subtropical</td>
<td>Economics</td>
</tr>
<tr>
<td>N-China</td>
<td>Temperate</td>
<td>Political</td>
</tr>
<tr>
<td>Nepal</td>
<td>Mountainous</td>
<td>Social</td>
</tr>
<tr>
<td>Uganda</td>
<td>Tropical</td>
<td>Armed Conflict</td>
</tr>
<tr>
<td>Bosnia</td>
<td>Temperate</td>
<td>Armed Conflict</td>
</tr>
</tbody>
</table>
Results
Volgograd, Russia
Imagery composite (RGB: 743) in 1987

SILVIS Lab
Spatial Analysis for Conservation and Sustainability
Conclusions

• What is novel
 – Annual maps of abandonment: abandonment is frequent
Conclusions

• What is novel
 – Annual maps of abandonment: abandonment is frequent
 – Mapping algorithm that works globally: abandonment widespread across the globe
Conclusions

• What is novel
 – Annual maps of abandonment: abandonment is frequent
 – Mapping algorithm that works globally: abandonment widespread across the globe
 – Mapping algorithm that works in both forest and dryland biomes: abandonment widespread in drylands
Conclusions

• What is next
 – Annual maps of abandonment for E-Europe
 – Separating hayfield, pastures, and natural grasslands
 – Quantifying the value of having both Landsat and Sentinel-2
Conclusions

• In summary
 – Agricultural abandonment is an important LCLUC process
 But has been stepchild of land use science
 – We can map abandonment annually and in different biomes
 It is great to live the era of two Landsats and two Sentinel-2s
Thank you!