Mapping and modeling desertification and its impact on aeolian dust and human health in Central Asia

Xin Xi¹, Shan Zhou¹, Sabur Abdullaev²

¹Michigan Technological University; ²S.U.Umarov Physical-technical institute, Academy of Science of the Republic of Tajikistan

October 21 2020
Proposal team

• Xin Xi (PI)
 • Assistant Prof., Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University
 • PhD in Atmospheric Sciences, Georgia Institute of Technology (2014); BSc in Geoinformatics, Beijing Normal University (2007).

• Shan Zhou (co-I)
 • Assistant Prof., Dept. of Social Sciences, Michigan Technological University
 • PhD in Public Policy, Georgia Institute of Technology (2016); BSc in Environmental Science, Beijing Normal University (2007).

• Sabur Abdullaev (collaborator)
 • Head of Laboratory of Physical atmosphere, S.U.Umarov Physical-technical institute, Academy of Science of the Republic of Tajikistan.
 • Caretaker of the only AERONET site in Central Asia
 • Lead of Tajik-German joint Central Asian Dust Experiment (2014-16)

• We look forward to collaborations with CARIN scientists
Study region

- Five former Soviet states: Kazakhstan, Kyrgyzstan, Uzbekistan, Turkmenistan, Tajikistan.
 - Semiarid and arid climate
 - Climate variations and change
 - Desertification (formation of Aralkum, salinization, overgrazing, deforestation, etc.)

! Air pollution and health impact has not been considered in the economic valuation of desertification.
Objectives

• **Goal:** Assess the status and drivers of desertification and the impact on aeolian dust, outdoor air quality, and human health.

• **Objectives**
 - Map the spatiotemporal dynamics of desertification, and determine the roles of climate and socioeconomic drivers;
 - Quantify the contribution of desertification to aeolian dust and PM pollution;
 - Synthesize surface observations, remote sensing, and global model reanalysis to characterize the spatiotemporal variability of aeolian dust;
 - Assess the environmental justice and health impact of exposure to PM pollution.

• **Approach:** desertification-pollution-impact pathway
Question: What are the current extent of desertification and driving factor(s)?

Previous studies: Klein et al. 2012; de Beurs et al. 2015; Le et al. 2016

UNCCD Land Degradation Neutrality Indicators

- **Land cover**: ESA CCI (1992-2018, 300m), MODIS (2001-2019, 0.05° or 500m)
- **Land Productivity**: VOD (ecosystem structure), NDVI and SAVI (adjusted for soil background), NIR$_V$ (related to FPAR and GPP, even for sparse vegetation)
- **Carbon Stock**: soil organic carbon index

Separating the climate and anthropogenic drivers of desertification

- Residual trends analysis (Wessels et al. 2012)
Objective 2. Dust and air quality modeling

- **Question:** To what extent does desertification contribute to the region’s aeolian dust and air pollution?

- Case study of Aralkum dust event on May 26-28 2018
 - WRF-Chem dust-only
 - Evaluation by ground and satellite observations on plume evolution

- Extended simulation (a full year)
 - WRF-Chem fully coupled online chemistry
 - Three experiments: Control, no dust from desertification areas, no dust from human-driven desertification areas

Figure 5. CALIPSO 1064 nm total attenuated backscatter (km$^{-1}$ sr$^{-1}$) (left) and vertical feature mask (right) on May 28 2018. Separate dust systems are detected in Iran and Saudi Arabia.

Figure 6. EPIC/DSCOVR (nearly) hourly UVAI on May 27 2018 (only four frames are shown).
Obj 3. Aeolian dust characterization

- **Questions:** *How do climate variations and desertification affect the long-term dust activity?*

- Analysis of dust variability, trend, and climatic sensitivity from long-term observational and model datasets.
 - Weather station reports from NOAA Integrated Surface Database (ISD)
 - Deep Blue aerosol optical depth from MODIS (2000-) and VIIRS (2012-)
 - UV aerosol index from OMI (2004-)
 - EOF and SEM analysis of global aerosol analyses (MERRA2, CAMS, NAAPS)

\[R(\text{dust, wind}) = 0.7 \]
\[R(\text{dust, soil moisture}) = -0.45 \]
Obj 4. Health and societal impact

- **Question:** *What are the health and socioeconomic impacts of desertification-induced air pollution?*

- Environmental justice of air pollution
 - The health burden of desertification-related PM pollution not only varies by the spatial pattern of PM concentrations, but also depend on the socioeconomic status measured by the association between population-weighted pollutant concentration and demographic characteristics (e.g., age, race, income, poverty, education, etc.)

- Economic valuation of health-related external cost of air pollution
• Questions?
• xinxi@mtu.edu