Regionally Specific Drivers of Land-Use Transitions and Future Scenarios

A SYNTHESIS CONSIDERING THE LAND MANAGEMENT INFLUENCE IN THE SOUTHEASTERN US
Co-Investigators and Students

Virginia Tech: V.A. Thomas, R.H. Wynne, R.Q. Thomas, C.Blinn, J. Kauffman, E. Brooks, P. Williams, W. McCurdy, M. House

University of Maryland: L. Chini

University of Georgia: R.B. Mei

USDA Forest Service: D. Wear
In the southeastern US, forests are dynamic

- Planting/harvest cycle dominant decadal signal

Derived from Hansen et al (2013)
Two major land change patterns in the region

- Land-use changes
 - Forest ↔ Agriculture
 - Forest → Developed (urban)
 - Agriculture → Developed (urban)

- Periodic land cover changes reflecting forest management
 - Harvest, regeneration
 - Changes in density/composition
 - Naturally regenerating hardwoods → planted pine
2 parallel approaches to modeling past and future land use change

- Globally gridded land-use change products
- Regional, expert driven socioeconomic analysis

- A limiting feature of previous studies has been the treatment of secondary forests as a single land use
 - Lumping passively managed or unmanaged forests with those that are intensively managed
Overall project goal

- To develop regionally refined land-use transition matrices that consider the economic structure of land management and land use decisions, incorporating forest management
Project Study Area: USDA FS Region 8
Mapping forest management and thins in Virginia

Developing a vetted subset of harvest records
Aug 2014-June 2017

1) Manual adjustment of coordinates from landing to stand
 - High resolution imagery in Google Earth
 - 1200 points

2) Development of a persistent pine class
 - Because only harvests are in the database
 - 300 points
Predictor layers

- HR constant, sine, cosine, RMSE, R2
 - 2009-11, 2014-16 [~156 acquisition dates]
 - L5 NDVI, L5 SWIR1, L5 SWIR2, L8 Pan (for 2014-16)
- 2011 NLCD, NLCD Change, CDL
- 2011 NLCD Tree Canopy Cover
- Hansen Global Forest Product
 - Loss year
 - Gain
 - Tree cover

GEE for cloud-masking and EWMACD algorithm

Classification within CDL forest classes
(deciduous, mixed, coniferous, and woody wetlands)
(n samples=1497)

- Overall accuracy 80.2%
- 20 predictors
 - 2014-16 HR constant, sine, and cosine, R^2 and RMSE for NDVI, SWIR1, Pan
 - R^2 & RMSE for SWIR2
 - Hansen et al. loss year, tree cover, and gain
Hansen et al (2013) and updated products (Loss year, tree cover, gain) by themselves

- Very valuable as predictor variables.
- Alone, 60% accuracy
 - 51% for thins
- Consistent with Breidenbach et al. (2018)
Exclude the deciduous

- Combine
 - Passive mixed
 - Persistent Pine
- Overall accuracy 87%
 - Same 20 predictors
Reduce Variables to 10 for mapping

- Overall Accuracy 86%
 - HR Constant, Sine, Cosine, R^2, RMSE for Pan
 - R^2, RMSE for NDVI 2014-16
 - Hansen et al. Loss year, tree cover, gain
Development of a mask to apply to management classification

<table>
<thead>
<tr>
<th></th>
<th>Commercial Selection</th>
<th>Non-harvested Pine</th>
<th>Thin</th>
<th>Clear Cut</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLCD</td>
<td>93.8</td>
<td>96.7</td>
<td>76.1</td>
<td>89.1</td>
<td>87.8</td>
</tr>
<tr>
<td>NLCD + change</td>
<td>95.7</td>
<td>96.7</td>
<td>79.6</td>
<td>91.6</td>
<td>90</td>
</tr>
<tr>
<td>CDL</td>
<td>97.7</td>
<td>99.7</td>
<td>94.1</td>
<td>98.4</td>
<td>97.2</td>
</tr>
</tbody>
</table>

- NLCD classes: 41, 42, 43, 90
- CDL classes: 141, 142, 143, 190
- Maximize amount of thins captured by forest classes
Clear Cut in 2014

Persistent Pine

2014 Thin
Implications of forest management mapping progress to date

- Single-harmonic fourier regression valuable predictors for forest thins.
- The Hansen et al. (2013) global forest product layers were valuable predictors in our algorithm
 - Not sufficient for thins on their own
- High-resolution panchromatic band in Landsat 8 valuable
- High performance computing needed
Forest management and LAI

Management and LAI: Loss and Recovery

- Loss and recovery
- Fertilization
- Understory and competition
Landsat-LAI for regional projections of productivity and fertility

Ensemble Kalman Filter approach

- Initial guess for site fertility factor parameter
- Stand age from Landsat
- Initial guess for biomass states
- Parameters and process uncertainty from existing regional calibration

- Model states and site fertility parameter for next time step
- 3-PG simulation with process uncertainty added
- Winter LAI from Landsat with observational uncertainty

With Landsat LAI estimates

- Ensemble Kalman Filter for updating model states and site fertility parameter

Without Landsat LAI estimates

- Posterior estimates of site fertility factor and model states for use as initial condition uncertainty for forecasting

Graphs

- LAI over years with and without Landsat LAI estimates
- Stand-level soil fertility parameter over years with and without Landsat LAI estimates
Economic framework that incorporates biophysical and financial risk

Economic framework for land use transitions that includes biophysical and financial risk

- Blend stochastic processes for prices and net yields within a real options framework that accounts for the temporal structure of forest production
- Timber Mart-South (TMS) timber price data
- 3-PG models of growth and yield for 20 global circulation models (GCMs) based on the RCP 8.5 emissions scenario
- Monte Carlo simulations to incorporate both financial and biophysical risk
 - Geometric Brownian motion (GBM) stochastic function
 - Examined the optimal entry and exit opportunities of timberland investment in 10 southern states in the United States.
 - Mostly “hold”
 - Slight upward trend in investment
Synthesis and Intercomparisons

- Synthesis of
 - Landsat classifications
 - At GLM scale
 - Southern Forest Futures
 - At GLM scale
 - GLM Land Use transition matrices
- Establish a baseline to quantify the impact of regionally-specific land use transition matrix.

<table>
<thead>
<tr>
<th>GLM Class</th>
<th>NLCD Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>21 Developed, Open Space 22 Developed, Low Intensity</td>
</tr>
<tr>
<td></td>
<td>23 Developed, Medium Intensity 24 Developed High Intensity</td>
</tr>
<tr>
<td>Crop Functional Types</td>
<td>82 Cultivated Crops</td>
</tr>
<tr>
<td>Managed Pasture</td>
<td>81 Pasture/Hay</td>
</tr>
<tr>
<td>Rangelands</td>
<td>71 Grassland/Herbaceous</td>
</tr>
<tr>
<td>Primary Non-Forest</td>
<td>31 Barren Land (Rock/Sand/Clay)</td>
</tr>
<tr>
<td>Secondary Non-Forest</td>
<td>11 Open Water 12 Perennial Ice/Snow 51 Dwarf Scrub</td>
</tr>
<tr>
<td></td>
<td>52 Shrub/Scrub 72 Sedge/Herbaceous 73 Lichens</td>
</tr>
<tr>
<td></td>
<td>74 Moss 95 Emergent Herbaceous Wetlands</td>
</tr>
<tr>
<td>Secondary Forest</td>
<td>41 Deciduous Forest 42 Evergreen Forest 43 Mixed Forest</td>
</tr>
<tr>
<td></td>
<td>90 Woody Wetlands</td>
</tr>
</tbody>
</table>
2001 to 2011

NLCD, all transitions away from secondary forest

NLCD, transitions from secondary forest to secondary/primary non-forest

NLCD, transitions from secondary forest to secondary/primary non-forest and rangeland

LUH wood harvest (from forest) area
Next steps

- Complete the regional analysis of thins and management based on the management classification techniques described above.

- Incorporate Landsat-derived land use transitions from production forestry as a separate new class in the LUH/GLM.

- Upscaling the Southern Forest Futures projections to the GLM to finalize the baseline comparison between the GLM, NLCD, and Southern Forest Futures land use transition matrices.

- Conduct intercomparison of (three) with land use transitions described by Landsat-based models, economic projections that incorporate risk, and the GLM.

- Continue to disseminate results.
Questions?

V. Thomas, thomasv@vt.edu
Forest Resources & Environmental Conservation
Virginia Tech

Acknowledgements:
NASA LCLUC
Zhiqiang Yang, Oregon State
Virginia Department of Forestry
International Paper